{"title":"对称群字符表中零点的大规模蒙特卡罗模拟","authors":"Alexander Miller, Danny Scheinerman","doi":"10.1090/mcom/3964","DOIUrl":null,"url":null,"abstract":"<p>This is a brief report on some recent large-scale Monte Carlo simulations for approximating the density of zeros in character tables of large symmetric groups. Previous computations suggested that a large fraction of zeros cannot be explained by classical vanishing results. Our computations eclipse previous ones and suggest that the opposite is true. In fact, we find empirically that almost all of the zeros are of a single classical type.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"35 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-scale Monte Carlo simulations for zeros in character tables of symmetric groups\",\"authors\":\"Alexander Miller, Danny Scheinerman\",\"doi\":\"10.1090/mcom/3964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This is a brief report on some recent large-scale Monte Carlo simulations for approximating the density of zeros in character tables of large symmetric groups. Previous computations suggested that a large fraction of zeros cannot be explained by classical vanishing results. Our computations eclipse previous ones and suggest that the opposite is true. In fact, we find empirically that almost all of the zeros are of a single classical type.</p>\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3964\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3964","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Large-scale Monte Carlo simulations for zeros in character tables of symmetric groups
This is a brief report on some recent large-scale Monte Carlo simulations for approximating the density of zeros in character tables of large symmetric groups. Previous computations suggested that a large fraction of zeros cannot be explained by classical vanishing results. Our computations eclipse previous ones and suggest that the opposite is true. In fact, we find empirically that almost all of the zeros are of a single classical type.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.