{"title":"通过掺杂铁优化镍钴氧化物对氧中间体的吸附强度以改善氧进化反应性能","authors":"Xilin Zhang, Rui Song, Yanyan Zhai, Rui Zheng, Shan Wang, Zhongjun Ma, Zongxian Yang","doi":"10.1103/physrevmaterials.8.095801","DOIUrl":null,"url":null,"abstract":"Spinel oxide (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>NiC</mi><msub><mi mathvariant=\"normal\">o</mi><mn>2</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>4</mn></msub></mrow></math>) is an attractive catalyst for oxygen evolution reaction (OER) due to its rich redox reactions and unique electronic structure. However, the electrocatalytic OER performance of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>NiC</mi><msub><mi mathvariant=\"normal\">o</mi><mn>2</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>4</mn></msub></mrow></math> has always been limited by the low specific surface area and poor intrinsic conductivity of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>NiC</mi><msub><mi mathvariant=\"normal\">o</mi><mn>2</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>4</mn></msub></mrow></math>. Cationic doping is an effective method in modulating the electrocatalytic activity at the atomic level to improve the conductivity and activity. Herein, a series of Fe-doped <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>NiC</mi><msub><mi mathvariant=\"normal\">o</mi><mn>2</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>4</mn></msub></mrow></math> electrocatalysts were successfully prepared using a simple solvothermal method. Impressively, Fe-doped <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>NiC</mi><msub><mi mathvariant=\"normal\">o</mi><mn>2</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>4</mn></msub></mrow></math> delivers an attractive small overpotential of 341 mV at <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>10</mn><mspace width=\"0.28em\"></mspace><mi>mA</mi><mspace width=\"0.16em\"></mspace><mi mathvariant=\"normal\">c</mi><msup><mrow><mi mathvariant=\"normal\">m</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math> and a Tafel slope of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>74</mn><mspace width=\"0.28em\"></mspace><mi>mV</mi><mspace width=\"0.16em\"></mspace><mi>de</mi><msup><mrow><mi mathvariant=\"normal\">c</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math> compared to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>NiC</mi><msub><mi mathvariant=\"normal\">o</mi><mn>2</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>4</mn></msub></mrow></math>. The x-ray photoelectron spectroscopy and the density functional theory calculations reveal that Fe dopants can regulate the electronic structure of Ni sites by donating electrons to Co atoms, which leads to an increased <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">N</mi><msup><mrow><mi mathvariant=\"normal\">i</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></mrow></math> ratio and a reduced adsorption strength of oxygen intermediates at Ni sites, thus facilitating the conversion of *OH to *O. This work provides an effective approach to enhancing the electrocatalytic activities of non-noble-metal-based catalysts.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":"32 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the adsorption strength of oxygen intermediates on NiCo2O4 by Fe doping to improve the oxygen evolution reaction performance\",\"authors\":\"Xilin Zhang, Rui Song, Yanyan Zhai, Rui Zheng, Shan Wang, Zhongjun Ma, Zongxian Yang\",\"doi\":\"10.1103/physrevmaterials.8.095801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spinel oxide (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>NiC</mi><msub><mi mathvariant=\\\"normal\\\">o</mi><mn>2</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>4</mn></msub></mrow></math>) is an attractive catalyst for oxygen evolution reaction (OER) due to its rich redox reactions and unique electronic structure. However, the electrocatalytic OER performance of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>NiC</mi><msub><mi mathvariant=\\\"normal\\\">o</mi><mn>2</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>4</mn></msub></mrow></math> has always been limited by the low specific surface area and poor intrinsic conductivity of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>NiC</mi><msub><mi mathvariant=\\\"normal\\\">o</mi><mn>2</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>4</mn></msub></mrow></math>. Cationic doping is an effective method in modulating the electrocatalytic activity at the atomic level to improve the conductivity and activity. Herein, a series of Fe-doped <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>NiC</mi><msub><mi mathvariant=\\\"normal\\\">o</mi><mn>2</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>4</mn></msub></mrow></math> electrocatalysts were successfully prepared using a simple solvothermal method. Impressively, Fe-doped <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>NiC</mi><msub><mi mathvariant=\\\"normal\\\">o</mi><mn>2</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>4</mn></msub></mrow></math> delivers an attractive small overpotential of 341 mV at <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>10</mn><mspace width=\\\"0.28em\\\"></mspace><mi>mA</mi><mspace width=\\\"0.16em\\\"></mspace><mi mathvariant=\\\"normal\\\">c</mi><msup><mrow><mi mathvariant=\\\"normal\\\">m</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math> and a Tafel slope of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>74</mn><mspace width=\\\"0.28em\\\"></mspace><mi>mV</mi><mspace width=\\\"0.16em\\\"></mspace><mi>de</mi><msup><mrow><mi mathvariant=\\\"normal\\\">c</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math> compared to <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>NiC</mi><msub><mi mathvariant=\\\"normal\\\">o</mi><mn>2</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>4</mn></msub></mrow></math>. The x-ray photoelectron spectroscopy and the density functional theory calculations reveal that Fe dopants can regulate the electronic structure of Ni sites by donating electrons to Co atoms, which leads to an increased <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">N</mi><msup><mrow><mi mathvariant=\\\"normal\\\">i</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></mrow></math> ratio and a reduced adsorption strength of oxygen intermediates at Ni sites, thus facilitating the conversion of *OH to *O. This work provides an effective approach to enhancing the electrocatalytic activities of non-noble-metal-based catalysts.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.8.095801\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.095801","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
尖晶石氧化物(NiCo2O4)具有丰富的氧化还原反应和独特的电子结构,是一种极具吸引力的氧进化反应催化剂。然而,由于镍钴氧化物的比表面积低、内在电导率差,其电催化 OER 的性能一直受到限制。阳离子掺杂是在原子水平上调节电催化活性以提高电导率和活性的有效方法。本文采用简单的溶热法成功制备了一系列掺杂 Fe 的 NiCo2O4 电催化剂。令人印象深刻的是,与镍钴氧化物相比,掺杂铁的镍钴氧化物在 10mAcm-2 条件下具有 341 mV 的极小过电位和 74mVdec-1 的塔菲尔斜率。X 射线光电子能谱和密度泛函理论计算显示,掺杂铁元素可以通过向 Co 原子捐献电子来调节 Ni 位点的电子结构,从而导致 Ni3+ 比率增加,氧中间产物在 Ni 位点的吸附强度降低,从而促进 *OH 向 *O 的转化。这项工作为提高非贵金属基催化剂的电催化活性提供了一种有效的方法。
Optimizing the adsorption strength of oxygen intermediates on NiCo2O4 by Fe doping to improve the oxygen evolution reaction performance
Spinel oxide () is an attractive catalyst for oxygen evolution reaction (OER) due to its rich redox reactions and unique electronic structure. However, the electrocatalytic OER performance of has always been limited by the low specific surface area and poor intrinsic conductivity of . Cationic doping is an effective method in modulating the electrocatalytic activity at the atomic level to improve the conductivity and activity. Herein, a series of Fe-doped electrocatalysts were successfully prepared using a simple solvothermal method. Impressively, Fe-doped delivers an attractive small overpotential of 341 mV at and a Tafel slope of compared to . The x-ray photoelectron spectroscopy and the density functional theory calculations reveal that Fe dopants can regulate the electronic structure of Ni sites by donating electrons to Co atoms, which leads to an increased ratio and a reduced adsorption strength of oxygen intermediates at Ni sites, thus facilitating the conversion of *OH to *O. This work provides an effective approach to enhancing the electrocatalytic activities of non-noble-metal-based catalysts.
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.