Stephan Erdmann, Halil İbrahim Sözen, Francois Guillou, Hargen Yibole, Thorsten Klüner
{"title":"关于 Fe2P 型磁体的理论和实验研究:硅和钴的替代对物理和磁性能的影响","authors":"Stephan Erdmann, Halil İbrahim Sözen, Francois Guillou, Hargen Yibole, Thorsten Klüner","doi":"10.1103/physrevmaterials.8.094401","DOIUrl":null,"url":null,"abstract":"<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Fe</mi><mn>2</mn></msub><mi mathvariant=\"normal\">P</mi></mrow></math>-based magnets are known for their significant magnetic properties, making them useful in various technological applications. The aim of this study was to investigate the effects of Si and Co substitution on the physical and magnetic properties of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Fe</mi><mn>2</mn></msub><mi mathvariant=\"normal\">P</mi></mrow></math> compounds. In order to have a systematic understanding we have performed combined <i>ab initio</i> calculations and a set of experiments. Particular emphasis was placed on the study of preferential substitution sites, lattice constants, magnetic moments, and the Curie temperature (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>C</mi></msub></math>), which was further explored by considering the exchange interaction energies <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>J</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></math>. Satisfactory agreement was observed between theoretical calculations and the predicted phase transition from the hexagonal to the body-centered-orthorhombic (BCO) crystal structure as a function of temperature. Theoretical calculations reveal that the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn><mi>c</mi></mrow></math> position is the preferred site for Si, while Co is expected to occupy the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>3</mn><mi>f</mi></mrow></math> sites. Theoretical analysis of the magnetic moments shows an increase up to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>3.64</mn><mspace width=\"0.16em\"></mspace><msub><mi>μ</mi><mi>B</mi></msub><mo>/</mo><mrow><mi mathvariant=\"normal\">f</mi><mo>.</mo><mi mathvariant=\"normal\">u</mi><mo>.</mo></mrow></mrow></math> for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>x</mi></mrow></math> = 0.5 Si, which agrees with the experimental values of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>3.16</mn><mspace width=\"0.16em\"></mspace><msub><mi>μ</mi><mi>B</mi></msub><mo>/</mo><mrow><mi mathvariant=\"normal\">f</mi><mo>.</mo><mi mathvariant=\"normal\">u</mi><mo>.</mo></mrow></mrow></math> Co substitution in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Fe</mi><mrow><mn>2</mn><mo>−</mo><mi>y</mi></mrow></msub><msub><mi>Co</mi><mi>y</mi></msub><msub><mi mathvariant=\"normal\">P</mi><mrow><mn>0.84</mn></mrow></msub><msub><mi>Si</mi><mrow><mn>0.16</mn></mrow></msub></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Fe</mi><mrow><mn>2</mn><mo>−</mo><mi>y</mi></mrow></msub><msub><mi>Co</mi><mi>y</mi></msub><msub><mi mathvariant=\"normal\">P</mi><mrow><mn>0.59</mn></mrow></msub><msub><mi>Si</mi><mrow><mn>0.41</mn></mrow></msub></mrow></math> resulted in a decrease in magnetic moments and consequently in other magnetic properties. Focusing on the Curie temperature, three different trends were found depending on the Si concentration. A dependence of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>3</mn><mi>f</mi><mtext>−</mtext><mn>3</mn><mi>f</mi></mrow></math> intralayer exchange interaction energies on Si was proposed as the reason for the trends and deduced as the reason for an increase in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>C</mi></msub></math> at low, no change in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>C</mi></msub></math> at medium, and a decrease in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>C</mi></msub></math> at high Si concentrations.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":"180 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical and experimental investigations on Fe2P-type magnets: Effects of Si and Co substitution on physical and magnetic properties\",\"authors\":\"Stephan Erdmann, Halil İbrahim Sözen, Francois Guillou, Hargen Yibole, Thorsten Klüner\",\"doi\":\"10.1103/physrevmaterials.8.094401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Fe</mi><mn>2</mn></msub><mi mathvariant=\\\"normal\\\">P</mi></mrow></math>-based magnets are known for their significant magnetic properties, making them useful in various technological applications. The aim of this study was to investigate the effects of Si and Co substitution on the physical and magnetic properties of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Fe</mi><mn>2</mn></msub><mi mathvariant=\\\"normal\\\">P</mi></mrow></math> compounds. In order to have a systematic understanding we have performed combined <i>ab initio</i> calculations and a set of experiments. Particular emphasis was placed on the study of preferential substitution sites, lattice constants, magnetic moments, and the Curie temperature (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>C</mi></msub></math>), which was further explored by considering the exchange interaction energies <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>J</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></math>. Satisfactory agreement was observed between theoretical calculations and the predicted phase transition from the hexagonal to the body-centered-orthorhombic (BCO) crystal structure as a function of temperature. Theoretical calculations reveal that the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>2</mn><mi>c</mi></mrow></math> position is the preferred site for Si, while Co is expected to occupy the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>3</mn><mi>f</mi></mrow></math> sites. Theoretical analysis of the magnetic moments shows an increase up to <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>3.64</mn><mspace width=\\\"0.16em\\\"></mspace><msub><mi>μ</mi><mi>B</mi></msub><mo>/</mo><mrow><mi mathvariant=\\\"normal\\\">f</mi><mo>.</mo><mi mathvariant=\\\"normal\\\">u</mi><mo>.</mo></mrow></mrow></math> for <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>x</mi></mrow></math> = 0.5 Si, which agrees with the experimental values of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>3.16</mn><mspace width=\\\"0.16em\\\"></mspace><msub><mi>μ</mi><mi>B</mi></msub><mo>/</mo><mrow><mi mathvariant=\\\"normal\\\">f</mi><mo>.</mo><mi mathvariant=\\\"normal\\\">u</mi><mo>.</mo></mrow></mrow></math> Co substitution in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Fe</mi><mrow><mn>2</mn><mo>−</mo><mi>y</mi></mrow></msub><msub><mi>Co</mi><mi>y</mi></msub><msub><mi mathvariant=\\\"normal\\\">P</mi><mrow><mn>0.84</mn></mrow></msub><msub><mi>Si</mi><mrow><mn>0.16</mn></mrow></msub></mrow></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Fe</mi><mrow><mn>2</mn><mo>−</mo><mi>y</mi></mrow></msub><msub><mi>Co</mi><mi>y</mi></msub><msub><mi mathvariant=\\\"normal\\\">P</mi><mrow><mn>0.59</mn></mrow></msub><msub><mi>Si</mi><mrow><mn>0.41</mn></mrow></msub></mrow></math> resulted in a decrease in magnetic moments and consequently in other magnetic properties. Focusing on the Curie temperature, three different trends were found depending on the Si concentration. A dependence of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>3</mn><mi>f</mi><mtext>−</mtext><mn>3</mn><mi>f</mi></mrow></math> intralayer exchange interaction energies on Si was proposed as the reason for the trends and deduced as the reason for an increase in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>C</mi></msub></math> at low, no change in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>C</mi></msub></math> at medium, and a decrease in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>C</mi></msub></math> at high Si concentrations.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":\"180 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.8.094401\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.094401","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
众所周知,Fe2P 基磁体具有显著的磁性能,因此在各种技术应用中都非常有用。本研究旨在探讨硅和钴的替代对 Fe2P 化合物物理和磁性能的影响。为了对其有一个系统的了解,我们结合了 ab initio 计算和一系列实验。重点研究了优先取代位点、晶格常数、磁矩和居里温度 (TC),并通过考虑交换相互作用能 Jij 进一步探讨了居里温度。理论计算结果与预测的从六方晶体结构到体心正方体(BCO)晶体结构的相变随温度变化的函数之间存在令人满意的一致性。理论计算显示,2c 位是硅的首选位置,而 Co 预计会占据 3f 位。在 Fe2-yCoyP0.84Si0.16 和 Fe2-yCoyP0.59Si0.41 中取代 Co 会导致磁矩减小,从而降低其他磁性能。在居里温度方面,根据硅浓度的不同,发现了三种不同的趋势。3f-3f 层内交换相互作用能量对 Si 的依赖性被认为是这些趋势的原因,并被推断为低浓度 Si 时 TC 增加、中浓度 Si 时 TC 不变以及高浓度 Si 时 TC 降低的原因。
Theoretical and experimental investigations on Fe2P-type magnets: Effects of Si and Co substitution on physical and magnetic properties
-based magnets are known for their significant magnetic properties, making them useful in various technological applications. The aim of this study was to investigate the effects of Si and Co substitution on the physical and magnetic properties of the compounds. In order to have a systematic understanding we have performed combined ab initio calculations and a set of experiments. Particular emphasis was placed on the study of preferential substitution sites, lattice constants, magnetic moments, and the Curie temperature (), which was further explored by considering the exchange interaction energies . Satisfactory agreement was observed between theoretical calculations and the predicted phase transition from the hexagonal to the body-centered-orthorhombic (BCO) crystal structure as a function of temperature. Theoretical calculations reveal that the position is the preferred site for Si, while Co is expected to occupy the sites. Theoretical analysis of the magnetic moments shows an increase up to for = 0.5 Si, which agrees with the experimental values of Co substitution in and resulted in a decrease in magnetic moments and consequently in other magnetic properties. Focusing on the Curie temperature, three different trends were found depending on the Si concentration. A dependence of the intralayer exchange interaction energies on Si was proposed as the reason for the trends and deduced as the reason for an increase in at low, no change in at medium, and a decrease in at high Si concentrations.
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.