TaRhTe4 中与层相关的拓扑相和转变:从单层和双层到块体

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiao Zhang, Ning Mao, Oleg Janson, Jeroen van den Brink, Rajyavardhan Ray
{"title":"TaRhTe4 中与层相关的拓扑相和转变:从单层和双层到块体","authors":"Xiao Zhang, Ning Mao, Oleg Janson, Jeroen van den Brink, Rajyavardhan Ray","doi":"10.1103/physrevmaterials.8.094201","DOIUrl":null,"url":null,"abstract":"The recently synthesized ternary quasi-2D material <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>TaRhTe</mi><mn>4</mn></msub></math> is a bulk Weyl semimetal with an intrinsically layered structure, which poses the question of how the topology of its electronic structure depends on layer separations. Experimentally, these separations may be changed for instance by intercalation of the bulk, or by exfoliation, to reach monolayer or few-layer structures. Here, we show that in the monolayer limit a quantum spin Hall insulator (QSHI) state emerges, employing density functional calculations as well as a minimal four-orbital tight-binding model that we develop. Even for weak spin-orbit couplings the QSHI is present, which has an interesting edge state that features Rashba-split bands with quadratic band minima. Further, we find that a weak topological insulator (WTI) manifests in the bilayer system due to sizable intralayer hopping, contrary to the common lore that only weak interlayer interactions between stacked QSHIs lead to WTIs. Stacked bilayers give rise to a phase diagram as a function of the interlayer separation that comprises a Weyl semimetal, WTI, and normal insulator (NI) phases. These insights on the evolution of topology with dimensions can be transferred to the family of layered ternary transition metal tellurides.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":"10 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layer dependent topological phases and transitions in TaRhTe4: From monolayer and bilayer to bulk\",\"authors\":\"Xiao Zhang, Ning Mao, Oleg Janson, Jeroen van den Brink, Rajyavardhan Ray\",\"doi\":\"10.1103/physrevmaterials.8.094201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recently synthesized ternary quasi-2D material <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>TaRhTe</mi><mn>4</mn></msub></math> is a bulk Weyl semimetal with an intrinsically layered structure, which poses the question of how the topology of its electronic structure depends on layer separations. Experimentally, these separations may be changed for instance by intercalation of the bulk, or by exfoliation, to reach monolayer or few-layer structures. Here, we show that in the monolayer limit a quantum spin Hall insulator (QSHI) state emerges, employing density functional calculations as well as a minimal four-orbital tight-binding model that we develop. Even for weak spin-orbit couplings the QSHI is present, which has an interesting edge state that features Rashba-split bands with quadratic band minima. Further, we find that a weak topological insulator (WTI) manifests in the bilayer system due to sizable intralayer hopping, contrary to the common lore that only weak interlayer interactions between stacked QSHIs lead to WTIs. Stacked bilayers give rise to a phase diagram as a function of the interlayer separation that comprises a Weyl semimetal, WTI, and normal insulator (NI) phases. These insights on the evolution of topology with dimensions can be transferred to the family of layered ternary transition metal tellurides.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.8.094201\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.094201","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近合成的三元准二维材料 TaRhTe4 是一种具有固有层状结构的体韦尔半金属,这就提出了一个问题:其电子结构的拓扑如何取决于层的分离。在实验中,可以通过体层插层或剥离等方法改变这些分隔,从而达到单层或少层结构。在这里,我们利用密度泛函计算以及我们开发的最小四轨道紧密结合模型,证明在单层极限下会出现量子自旋霍尔绝缘体(QSHI)状态。即使在弱自旋轨道耦合的情况下,QSHI 也会出现,它有一个有趣的边缘态,其特征是具有二次带极小值的拉什巴分裂带。此外,我们还发现双层体系中会出现弱拓扑绝缘体 (WTI),这是由于层内跳变的影响,这与通常认为只有堆叠的 QSHIs 之间的弱层间相互作用才会导致 WTI 的说法相反。堆叠双层膜产生的相图是层间分离的函数,其中包括韦尔半金属、WTI 和正常绝缘体 (NI) 相。这些关于拓扑结构随尺寸演变的见解可以应用到层状三元过渡金属碲家族中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Layer dependent topological phases and transitions in TaRhTe4: From monolayer and bilayer to bulk

Layer dependent topological phases and transitions in TaRhTe4: From monolayer and bilayer to bulk
The recently synthesized ternary quasi-2D material TaRhTe4 is a bulk Weyl semimetal with an intrinsically layered structure, which poses the question of how the topology of its electronic structure depends on layer separations. Experimentally, these separations may be changed for instance by intercalation of the bulk, or by exfoliation, to reach monolayer or few-layer structures. Here, we show that in the monolayer limit a quantum spin Hall insulator (QSHI) state emerges, employing density functional calculations as well as a minimal four-orbital tight-binding model that we develop. Even for weak spin-orbit couplings the QSHI is present, which has an interesting edge state that features Rashba-split bands with quadratic band minima. Further, we find that a weak topological insulator (WTI) manifests in the bilayer system due to sizable intralayer hopping, contrary to the common lore that only weak interlayer interactions between stacked QSHIs lead to WTIs. Stacked bilayers give rise to a phase diagram as a function of the interlayer separation that comprises a Weyl semimetal, WTI, and normal insulator (NI) phases. These insights on the evolution of topology with dimensions can be transferred to the family of layered ternary transition metal tellurides.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Materials
Physical Review Materials Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
5.80
自引率
5.90%
发文量
611
期刊介绍: Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信