Xiao Zhang, Ning Mao, Oleg Janson, Jeroen van den Brink, Rajyavardhan Ray
{"title":"TaRhTe4 中与层相关的拓扑相和转变:从单层和双层到块体","authors":"Xiao Zhang, Ning Mao, Oleg Janson, Jeroen van den Brink, Rajyavardhan Ray","doi":"10.1103/physrevmaterials.8.094201","DOIUrl":null,"url":null,"abstract":"The recently synthesized ternary quasi-2D material <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>TaRhTe</mi><mn>4</mn></msub></math> is a bulk Weyl semimetal with an intrinsically layered structure, which poses the question of how the topology of its electronic structure depends on layer separations. Experimentally, these separations may be changed for instance by intercalation of the bulk, or by exfoliation, to reach monolayer or few-layer structures. Here, we show that in the monolayer limit a quantum spin Hall insulator (QSHI) state emerges, employing density functional calculations as well as a minimal four-orbital tight-binding model that we develop. Even for weak spin-orbit couplings the QSHI is present, which has an interesting edge state that features Rashba-split bands with quadratic band minima. Further, we find that a weak topological insulator (WTI) manifests in the bilayer system due to sizable intralayer hopping, contrary to the common lore that only weak interlayer interactions between stacked QSHIs lead to WTIs. Stacked bilayers give rise to a phase diagram as a function of the interlayer separation that comprises a Weyl semimetal, WTI, and normal insulator (NI) phases. These insights on the evolution of topology with dimensions can be transferred to the family of layered ternary transition metal tellurides.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":"10 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layer dependent topological phases and transitions in TaRhTe4: From monolayer and bilayer to bulk\",\"authors\":\"Xiao Zhang, Ning Mao, Oleg Janson, Jeroen van den Brink, Rajyavardhan Ray\",\"doi\":\"10.1103/physrevmaterials.8.094201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recently synthesized ternary quasi-2D material <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>TaRhTe</mi><mn>4</mn></msub></math> is a bulk Weyl semimetal with an intrinsically layered structure, which poses the question of how the topology of its electronic structure depends on layer separations. Experimentally, these separations may be changed for instance by intercalation of the bulk, or by exfoliation, to reach monolayer or few-layer structures. Here, we show that in the monolayer limit a quantum spin Hall insulator (QSHI) state emerges, employing density functional calculations as well as a minimal four-orbital tight-binding model that we develop. Even for weak spin-orbit couplings the QSHI is present, which has an interesting edge state that features Rashba-split bands with quadratic band minima. Further, we find that a weak topological insulator (WTI) manifests in the bilayer system due to sizable intralayer hopping, contrary to the common lore that only weak interlayer interactions between stacked QSHIs lead to WTIs. Stacked bilayers give rise to a phase diagram as a function of the interlayer separation that comprises a Weyl semimetal, WTI, and normal insulator (NI) phases. These insights on the evolution of topology with dimensions can be transferred to the family of layered ternary transition metal tellurides.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.8.094201\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.094201","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Layer dependent topological phases and transitions in TaRhTe4: From monolayer and bilayer to bulk
The recently synthesized ternary quasi-2D material is a bulk Weyl semimetal with an intrinsically layered structure, which poses the question of how the topology of its electronic structure depends on layer separations. Experimentally, these separations may be changed for instance by intercalation of the bulk, or by exfoliation, to reach monolayer or few-layer structures. Here, we show that in the monolayer limit a quantum spin Hall insulator (QSHI) state emerges, employing density functional calculations as well as a minimal four-orbital tight-binding model that we develop. Even for weak spin-orbit couplings the QSHI is present, which has an interesting edge state that features Rashba-split bands with quadratic band minima. Further, we find that a weak topological insulator (WTI) manifests in the bilayer system due to sizable intralayer hopping, contrary to the common lore that only weak interlayer interactions between stacked QSHIs lead to WTIs. Stacked bilayers give rise to a phase diagram as a function of the interlayer separation that comprises a Weyl semimetal, WTI, and normal insulator (NI) phases. These insights on the evolution of topology with dimensions can be transferred to the family of layered ternary transition metal tellurides.
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.