{"title":"通过位点选择性阳离子置换调谐 s=1/2 自旋梯 Ba2CuTe1-xWxO6 中的磁相关性","authors":"Muskan Sande, Joydev Khatua, Youngsu Choi, Kwang-Yong Choi","doi":"10.1103/physrevmaterials.8.094404","DOIUrl":null,"url":null,"abstract":"The site-selective substitution of diamagnetic <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mrow><mi>d</mi></mrow><mn>10</mn></msup><mo>/</mo><msup><mrow><mi>d</mi></mrow><mn>0</mn></msup></mrow></math> cations offers an efficient way to fine-tune magnetic characteristics by controlling orbital hybridization and superexchange pathways. Herein, we explore the tunability of magnetic properties in coupled spin-ladder compounds <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">B</mi><msub><mi mathvariant=\"normal\">a</mi><mn>2</mn></msub><mi>CuT</mi><msub><mi mathvariant=\"normal\">e</mi><mrow><mn>1</mn><mrow><mtext>−</mtext><mi>x</mi></mrow></mrow></msub><msub><mi mathvariant=\"normal\">W</mi><mi>x</mi></msub><msub><mi mathvariant=\"normal\">O</mi><mn>6</mn></msub></mrow></math> (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>x</mi><mo>=</mo><mn>0.0</mn><mo>−</mo><mn>0.30</mn></mrow></math>). The pristine compound exhibits spin-singlet correlations at elevated temperatures, as evidenced by a magnetic susceptibility peak at <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>T</mi><mi>max</mi></msub><mo>∼</mo><mn>70</mn></mrow></math> K, Schottky-like specific heat, unconventional magnetic Raman scattering, and a quasilinear decrease in the electron spin resonance linewidth. Notably, the substitution of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi mathvariant=\"normal\">W</mi></mrow><mrow><mn>6</mn><mo>+</mo></mrow></msup></math> for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">T</mi><msup><mrow><mi mathvariant=\"normal\">e</mi></mrow><mrow><mn>6</mn><mo>+</mo></mrow></msup></mrow></math> brings about several marked changes: an increase in the Curie-Weiss temperature, a suppression in the Néel ordering temperature, enhanced magnetic susceptibility at low temperatures, and a weakening of spin-ladder correlations. These modifications collectively suggest that the newly activated exchange interactions through <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi mathvariant=\"normal\">W</mi></mrow><mrow><mn>6</mn><mo>+</mo></mrow></msup></math> substitution primarily alter intraladder spin topology while amplifying quantum critical fluctuations. This finding highlights the potential for controlling magnetic correlations in spin-ladder compounds through targeted chemical substitution.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":"57 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning magnetic correlations in s=1/2 spin ladder Ba2CuTe1−xWxO6 through site-selective cation substitution\",\"authors\":\"Muskan Sande, Joydev Khatua, Youngsu Choi, Kwang-Yong Choi\",\"doi\":\"10.1103/physrevmaterials.8.094404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The site-selective substitution of diamagnetic <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msup><mrow><mi>d</mi></mrow><mn>10</mn></msup><mo>/</mo><msup><mrow><mi>d</mi></mrow><mn>0</mn></msup></mrow></math> cations offers an efficient way to fine-tune magnetic characteristics by controlling orbital hybridization and superexchange pathways. Herein, we explore the tunability of magnetic properties in coupled spin-ladder compounds <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">B</mi><msub><mi mathvariant=\\\"normal\\\">a</mi><mn>2</mn></msub><mi>CuT</mi><msub><mi mathvariant=\\\"normal\\\">e</mi><mrow><mn>1</mn><mrow><mtext>−</mtext><mi>x</mi></mrow></mrow></msub><msub><mi mathvariant=\\\"normal\\\">W</mi><mi>x</mi></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>6</mn></msub></mrow></math> (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>x</mi><mo>=</mo><mn>0.0</mn><mo>−</mo><mn>0.30</mn></mrow></math>). The pristine compound exhibits spin-singlet correlations at elevated temperatures, as evidenced by a magnetic susceptibility peak at <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>T</mi><mi>max</mi></msub><mo>∼</mo><mn>70</mn></mrow></math> K, Schottky-like specific heat, unconventional magnetic Raman scattering, and a quasilinear decrease in the electron spin resonance linewidth. Notably, the substitution of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi mathvariant=\\\"normal\\\">W</mi></mrow><mrow><mn>6</mn><mo>+</mo></mrow></msup></math> for <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">T</mi><msup><mrow><mi mathvariant=\\\"normal\\\">e</mi></mrow><mrow><mn>6</mn><mo>+</mo></mrow></msup></mrow></math> brings about several marked changes: an increase in the Curie-Weiss temperature, a suppression in the Néel ordering temperature, enhanced magnetic susceptibility at low temperatures, and a weakening of spin-ladder correlations. These modifications collectively suggest that the newly activated exchange interactions through <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi mathvariant=\\\"normal\\\">W</mi></mrow><mrow><mn>6</mn><mo>+</mo></mrow></msup></math> substitution primarily alter intraladder spin topology while amplifying quantum critical fluctuations. This finding highlights the potential for controlling magnetic correlations in spin-ladder compounds through targeted chemical substitution.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.8.094404\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.094404","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Tuning magnetic correlations in s=1/2 spin ladder Ba2CuTe1−xWxO6 through site-selective cation substitution
The site-selective substitution of diamagnetic cations offers an efficient way to fine-tune magnetic characteristics by controlling orbital hybridization and superexchange pathways. Herein, we explore the tunability of magnetic properties in coupled spin-ladder compounds (). The pristine compound exhibits spin-singlet correlations at elevated temperatures, as evidenced by a magnetic susceptibility peak at K, Schottky-like specific heat, unconventional magnetic Raman scattering, and a quasilinear decrease in the electron spin resonance linewidth. Notably, the substitution of for brings about several marked changes: an increase in the Curie-Weiss temperature, a suppression in the Néel ordering temperature, enhanced magnetic susceptibility at low temperatures, and a weakening of spin-ladder correlations. These modifications collectively suggest that the newly activated exchange interactions through substitution primarily alter intraladder spin topology while amplifying quantum critical fluctuations. This finding highlights the potential for controlling magnetic correlations in spin-ladder compounds through targeted chemical substitution.
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.