一维准均匀克罗内克序列

IF 0.5 4区 数学 Q3 MATHEMATICS
Takashi Goda
{"title":"一维准均匀克罗内克序列","authors":"Takashi Goda","doi":"10.1007/s00013-024-02039-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this short note, we prove that the one-dimensional Kronecker sequence <span>\\(i\\alpha \\bmod 1, i=0,1,2,\\ldots ,\\)</span> is quasi-uniform over the unit interval [0, 1] if and only if <span>\\(\\alpha \\)</span> is a badly approximable number. Our elementary proof relies on a result on the three-gap theorem for Kronecker sequences due to Halton (Proc Camb Philos Soc, 61:665–670, 1965).</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"123 5","pages":"499 - 505"},"PeriodicalIF":0.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-02039-0.pdf","citationCount":"0","resultStr":"{\"title\":\"One-dimensional quasi-uniform Kronecker sequences\",\"authors\":\"Takashi Goda\",\"doi\":\"10.1007/s00013-024-02039-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this short note, we prove that the one-dimensional Kronecker sequence <span>\\\\(i\\\\alpha \\\\bmod 1, i=0,1,2,\\\\ldots ,\\\\)</span> is quasi-uniform over the unit interval [0, 1] if and only if <span>\\\\(\\\\alpha \\\\)</span> is a badly approximable number. Our elementary proof relies on a result on the three-gap theorem for Kronecker sequences due to Halton (Proc Camb Philos Soc, 61:665–670, 1965).</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"123 5\",\"pages\":\"499 - 505\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-024-02039-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02039-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02039-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇短文中,我们证明一维克朗内克序列 \(i\alpha \bmod 1, i=0,1,2,\ldots ,\) 在单位区间 [0, 1] 上是准均匀的,当且仅当\(\alpha \)是一个坏的可近似数。我们的基本证明依赖于哈尔顿(Halton)关于克朗内克序列三缺口定理的结果(Proc Camb Philos Soc, 61:665-670, 1965)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One-dimensional quasi-uniform Kronecker sequences

In this short note, we prove that the one-dimensional Kronecker sequence \(i\alpha \bmod 1, i=0,1,2,\ldots ,\) is quasi-uniform over the unit interval [0, 1] if and only if \(\alpha \) is a badly approximable number. Our elementary proof relies on a result on the three-gap theorem for Kronecker sequences due to Halton (Proc Camb Philos Soc, 61:665–670, 1965).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信