关于平行和的规范的评论

IF 0.5 4区 数学 Q3 MATHEMATICS
Ali Zamani
{"title":"关于平行和的规范的评论","authors":"Ali Zamani","doi":"10.1007/s00013-024-02048-z","DOIUrl":null,"url":null,"abstract":"<p>It is shown that if <span>\\(a\\!:\\!b\\)</span> is the parallel sum of the two positive definite elements <i>a</i> and <i>b</i> of a <span>\\(C^*\\)</span>-algebra, then for any <span>\\(s, t\\in [0, 1]\\)</span>, </p><span>$$\\begin{aligned} \\big \\Vert a\\!:\\!b\\big \\Vert \\le \\frac{1}{2}\\left( \\Vert a\\Vert \\!:\\!\\Vert b\\Vert + \\frac{\\Vert a\\Vert :\\Vert b\\Vert }{\\Vert a\\Vert +\\Vert b\\Vert }\\sqrt{\\left( \\Vert a\\Vert -\\Vert b\\Vert \\right) ^2 +4\\left\\| a^{1-s}b^{t}\\right\\| \\left\\| a^{s}b^{1-t}\\right\\| }\\,\\right) . \\end{aligned}$$</span><p>This inequality, which is sharper than the inequality <span>\\(\\big \\Vert a\\!:\\!b\\big \\Vert \\le \\Vert a\\Vert \\!:\\!\\Vert b\\Vert \\)</span>, generalizes an earlier related inequality.</p>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A remark on the norm of the parallel sum\",\"authors\":\"Ali Zamani\",\"doi\":\"10.1007/s00013-024-02048-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is shown that if <span>\\\\(a\\\\!:\\\\!b\\\\)</span> is the parallel sum of the two positive definite elements <i>a</i> and <i>b</i> of a <span>\\\\(C^*\\\\)</span>-algebra, then for any <span>\\\\(s, t\\\\in [0, 1]\\\\)</span>, </p><span>$$\\\\begin{aligned} \\\\big \\\\Vert a\\\\!:\\\\!b\\\\big \\\\Vert \\\\le \\\\frac{1}{2}\\\\left( \\\\Vert a\\\\Vert \\\\!:\\\\!\\\\Vert b\\\\Vert + \\\\frac{\\\\Vert a\\\\Vert :\\\\Vert b\\\\Vert }{\\\\Vert a\\\\Vert +\\\\Vert b\\\\Vert }\\\\sqrt{\\\\left( \\\\Vert a\\\\Vert -\\\\Vert b\\\\Vert \\\\right) ^2 +4\\\\left\\\\| a^{1-s}b^{t}\\\\right\\\\| \\\\left\\\\| a^{s}b^{1-t}\\\\right\\\\| }\\\\,\\\\right) . \\\\end{aligned}$$</span><p>This inequality, which is sharper than the inequality <span>\\\\(\\\\big \\\\Vert a\\\\!:\\\\!b\\\\big \\\\Vert \\\\le \\\\Vert a\\\\Vert \\\\!:\\\\!\\\\Vert b\\\\Vert \\\\)</span>, generalizes an earlier related inequality.</p>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00013-024-02048-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00013-024-02048-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究表明,如果 \(a\!:\!b\) 是一个 \(C^*\)- 代数的两个正定元素 a 和 b 的平行和,那么对于任何 \(s, t\in [0, 1]\),$$\begin{aligned}(开始{aligned})。\b\big \Vert \le \frac{1}{2}\left( \Vert a\Vert \!:\!\b\Vert + frac{Vert a\Vert :\Vert b\Vert }{Vert a\Vert +\Vert b\Vert }sqrt{left( ( \Vert a\Vert -\Vert b\Vert \right) ^2 +4\left| a^{1-s}b^{t}right\| \left| a^{s}b^{1-t}\right| }\,\right) .\end{aligned}$$这个不等式比不等式((\大\小ert a\!:\!b\big \Vert \le \Vert a\Vert \!:\!\Vert b\Vert \))更尖锐,它概括了一个早期的相关不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A remark on the norm of the parallel sum

It is shown that if \(a\!:\!b\) is the parallel sum of the two positive definite elements a and b of a \(C^*\)-algebra, then for any \(s, t\in [0, 1]\),

$$\begin{aligned} \big \Vert a\!:\!b\big \Vert \le \frac{1}{2}\left( \Vert a\Vert \!:\!\Vert b\Vert + \frac{\Vert a\Vert :\Vert b\Vert }{\Vert a\Vert +\Vert b\Vert }\sqrt{\left( \Vert a\Vert -\Vert b\Vert \right) ^2 +4\left\| a^{1-s}b^{t}\right\| \left\| a^{s}b^{1-t}\right\| }\,\right) . \end{aligned}$$

This inequality, which is sharper than the inequality \(\big \Vert a\!:\!b\big \Vert \le \Vert a\Vert \!:\!\Vert b\Vert \), generalizes an earlier related inequality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信