与不确定性原理不等式的螺线改进有关的一维最小化问题说明

IF 0.5 4区 数学 Q3 MATHEMATICS
Naoki Hamamoto
{"title":"与不确定性原理不等式的螺线改进有关的一维最小化问题说明","authors":"Naoki Hamamoto","doi":"10.1007/s00013-024-02042-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper gives a second way to solve the one-dimensional minimization problem of the form :  </p><div><div><span>$$\\begin{aligned} \\min _{f\\not \\equiv 0}\\frac{\\displaystyle \\int \\limits _0^\\infty \\left( f''\\right) ^2x^{\\mu +1}dx\\int \\limits _0^\\infty \\left( {x}^2\\left( f'\\right) ^2 -\\varepsilon f^2\\right) {{x}}^{\\mu -1}d{x}}{\\displaystyle \\left( \\int \\limits _0^\\infty \\left( f'\\right) ^2 {{x}}^{\\mu }d{x}\\right) ^2} \\end{aligned}$$</span></div></div><p>for scalar-valued functions <i>f</i> on the half line, where <span>\\(f'\\)</span> and <span>\\(f''\\)</span> are its derivatives and <span>\\(\\varepsilon \\)</span> and <span>\\(\\mu \\)</span> are positive parameters with <span>\\(\\varepsilon &lt; \\frac{\\mu ^2}{4}.\\)</span> This problem plays an essential part of the calculation of the best constant in Heisenberg’s uncertainty principle inequality for solenoidal vector fields. The above problem was originally solved by using (generalized) Laguerre polynomial expansion; however, the calculation was complicated and long. In the present paper, we give a simpler method to obtain the same solution, the essential part of which was communicated in Theorem 5.1 of the preprint (Hamamoto, arXiv:2104.02351v4, 2021).</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"123 6","pages":"653 - 662"},"PeriodicalIF":0.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-02042-5.pdf","citationCount":"0","resultStr":"{\"title\":\"A note on the 1-D minimization problem related to solenoidal improvement of the uncertainty principle inequality\",\"authors\":\"Naoki Hamamoto\",\"doi\":\"10.1007/s00013-024-02042-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper gives a second way to solve the one-dimensional minimization problem of the form :  </p><div><div><span>$$\\\\begin{aligned} \\\\min _{f\\\\not \\\\equiv 0}\\\\frac{\\\\displaystyle \\\\int \\\\limits _0^\\\\infty \\\\left( f''\\\\right) ^2x^{\\\\mu +1}dx\\\\int \\\\limits _0^\\\\infty \\\\left( {x}^2\\\\left( f'\\\\right) ^2 -\\\\varepsilon f^2\\\\right) {{x}}^{\\\\mu -1}d{x}}{\\\\displaystyle \\\\left( \\\\int \\\\limits _0^\\\\infty \\\\left( f'\\\\right) ^2 {{x}}^{\\\\mu }d{x}\\\\right) ^2} \\\\end{aligned}$$</span></div></div><p>for scalar-valued functions <i>f</i> on the half line, where <span>\\\\(f'\\\\)</span> and <span>\\\\(f''\\\\)</span> are its derivatives and <span>\\\\(\\\\varepsilon \\\\)</span> and <span>\\\\(\\\\mu \\\\)</span> are positive parameters with <span>\\\\(\\\\varepsilon &lt; \\\\frac{\\\\mu ^2}{4}.\\\\)</span> This problem plays an essential part of the calculation of the best constant in Heisenberg’s uncertainty principle inequality for solenoidal vector fields. The above problem was originally solved by using (generalized) Laguerre polynomial expansion; however, the calculation was complicated and long. In the present paper, we give a simpler method to obtain the same solution, the essential part of which was communicated in Theorem 5.1 of the preprint (Hamamoto, arXiv:2104.02351v4, 2021).</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"123 6\",\"pages\":\"653 - 662\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-024-02042-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02042-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02042-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了解决形式为:$$\begin{aligned}的一维最小化问题的第二种方法。\min _{f\not equiv 0}(int \limits _0^\infty \left( f''\right) ^2x^{\mu +1}dx\int \limits _0^\infty \left( {x}^2\left( f'\right) ^2 -\varepsilon f^2\right) {{x}}^{\mu -1}d{x}}{displaystyle \left( (int \limits _0\infty \left( f'\right) ^2 {{x}}^{\mu }d{x}\right) ^2}\end{aligned}$$对于半直线上的标量值函数f,其中 (f')和 (f'')是它的导数, (varepsilon)和 (mu)是正参数, (varepsilon < (frac/mu ^2}{4}。\这个问题是计算海森堡不确定性原理不等式中螺线管矢量场最佳常数的重要部分。上述问题最初是通过(广义)拉盖尔多项式展开来解决的,但计算复杂且耗时较长。在本文中,我们给出了一种更简单的方法来获得相同的解,其基本部分已在预印本(Hamamoto, arXiv:2104.02351v4, 2021)的定理 5.1 中给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the 1-D minimization problem related to solenoidal improvement of the uncertainty principle inequality

This paper gives a second way to solve the one-dimensional minimization problem of the form : 

$$\begin{aligned} \min _{f\not \equiv 0}\frac{\displaystyle \int \limits _0^\infty \left( f''\right) ^2x^{\mu +1}dx\int \limits _0^\infty \left( {x}^2\left( f'\right) ^2 -\varepsilon f^2\right) {{x}}^{\mu -1}d{x}}{\displaystyle \left( \int \limits _0^\infty \left( f'\right) ^2 {{x}}^{\mu }d{x}\right) ^2} \end{aligned}$$

for scalar-valued functions f on the half line, where \(f'\) and \(f''\) are its derivatives and \(\varepsilon \) and \(\mu \) are positive parameters with \(\varepsilon < \frac{\mu ^2}{4}.\) This problem plays an essential part of the calculation of the best constant in Heisenberg’s uncertainty principle inequality for solenoidal vector fields. The above problem was originally solved by using (generalized) Laguerre polynomial expansion; however, the calculation was complicated and long. In the present paper, we give a simpler method to obtain the same solution, the essential part of which was communicated in Theorem 5.1 of the preprint (Hamamoto, arXiv:2104.02351v4, 2021).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信