阿廷代数的导出维数和表示距离

IF 0.5 4区 数学 Q3 MATHEMATICS
Junling Zheng, Yingying Zhang
{"title":"阿廷代数的导出维数和表示距离","authors":"Junling Zheng,&nbsp;Yingying Zhang","doi":"10.1007/s00013-024-02030-9","DOIUrl":null,"url":null,"abstract":"<div><p>There is a well-known class of algebras called Igusa–Todorov algebras which were introduced in relation to the finitistic dimension conjecture. As a generalization of Igusa–Todorov algebras, the new notion of (<i>m</i>, <i>n</i>)-Igusa–Todorov algebras provides a wider framework for studying derived dimensions. In this paper, we give methods for constructing (<i>m</i>, <i>n</i>)-Igusa–Todorov algebras. As an application, we present for general Artin algebras a relationship between the derived dimension and the representation distance. Moreover, we end this paper to show that the main result can be used to give a better upper bound for the derived dimension for some classes of algebras.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The derived dimensions and representation distances of Artin algebras\",\"authors\":\"Junling Zheng,&nbsp;Yingying Zhang\",\"doi\":\"10.1007/s00013-024-02030-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There is a well-known class of algebras called Igusa–Todorov algebras which were introduced in relation to the finitistic dimension conjecture. As a generalization of Igusa–Todorov algebras, the new notion of (<i>m</i>, <i>n</i>)-Igusa–Todorov algebras provides a wider framework for studying derived dimensions. In this paper, we give methods for constructing (<i>m</i>, <i>n</i>)-Igusa–Todorov algebras. As an application, we present for general Artin algebras a relationship between the derived dimension and the representation distance. Moreover, we end this paper to show that the main result can be used to give a better upper bound for the derived dimension for some classes of algebras.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02030-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02030-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

伊古萨-托多罗夫(Igusa-Todorov)有一类著名的代数代数,是与有限维猜想有关而提出来的。作为 Igusa-Todorov 对象的广义化,(m, n)-Igusa-Todorov 对象的新概念为研究派生维数提供了更广阔的框架。本文给出了构建 (m, n)-Igusa-Todorov 对象的方法。作为应用,我们提出了一般阿尔丁代数的导出维数与表示距离之间的关系。此外,在本文的最后,我们还展示了主要结果可以用来为某些类别的代数给出更好的派生维度上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The derived dimensions and representation distances of Artin algebras

The derived dimensions and representation distances of Artin algebras

There is a well-known class of algebras called Igusa–Todorov algebras which were introduced in relation to the finitistic dimension conjecture. As a generalization of Igusa–Todorov algebras, the new notion of (mn)-Igusa–Todorov algebras provides a wider framework for studying derived dimensions. In this paper, we give methods for constructing (mn)-Igusa–Todorov algebras. As an application, we present for general Artin algebras a relationship between the derived dimension and the representation distance. Moreover, we end this paper to show that the main result can be used to give a better upper bound for the derived dimension for some classes of algebras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信