{"title":"阿廷代数的导出维数和表示距离","authors":"Junling Zheng, Yingying Zhang","doi":"10.1007/s00013-024-02030-9","DOIUrl":null,"url":null,"abstract":"<div><p>There is a well-known class of algebras called Igusa–Todorov algebras which were introduced in relation to the finitistic dimension conjecture. As a generalization of Igusa–Todorov algebras, the new notion of (<i>m</i>, <i>n</i>)-Igusa–Todorov algebras provides a wider framework for studying derived dimensions. In this paper, we give methods for constructing (<i>m</i>, <i>n</i>)-Igusa–Todorov algebras. As an application, we present for general Artin algebras a relationship between the derived dimension and the representation distance. Moreover, we end this paper to show that the main result can be used to give a better upper bound for the derived dimension for some classes of algebras.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"123 4","pages":"339 - 351"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The derived dimensions and representation distances of Artin algebras\",\"authors\":\"Junling Zheng, Yingying Zhang\",\"doi\":\"10.1007/s00013-024-02030-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There is a well-known class of algebras called Igusa–Todorov algebras which were introduced in relation to the finitistic dimension conjecture. As a generalization of Igusa–Todorov algebras, the new notion of (<i>m</i>, <i>n</i>)-Igusa–Todorov algebras provides a wider framework for studying derived dimensions. In this paper, we give methods for constructing (<i>m</i>, <i>n</i>)-Igusa–Todorov algebras. As an application, we present for general Artin algebras a relationship between the derived dimension and the representation distance. Moreover, we end this paper to show that the main result can be used to give a better upper bound for the derived dimension for some classes of algebras.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"123 4\",\"pages\":\"339 - 351\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02030-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02030-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The derived dimensions and representation distances of Artin algebras
There is a well-known class of algebras called Igusa–Todorov algebras which were introduced in relation to the finitistic dimension conjecture. As a generalization of Igusa–Todorov algebras, the new notion of (m, n)-Igusa–Todorov algebras provides a wider framework for studying derived dimensions. In this paper, we give methods for constructing (m, n)-Igusa–Todorov algebras. As an application, we present for general Artin algebras a relationship between the derived dimension and the representation distance. Moreover, we end this paper to show that the main result can be used to give a better upper bound for the derived dimension for some classes of algebras.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.