{"title":"切尔马克-德尔加多度量作为正集上的映射","authors":"William Cocke, Ryan McCulloch","doi":"10.1007/s00013-024-02015-8","DOIUrl":null,"url":null,"abstract":"<div><p>The Chermak–Delgado measure of a finite group is a function which assigns to each subgroup a positive integer. In this paper, we give necessary and sufficient conditions for when the Chermak–Delgado measure of a group is actually a map of posets, i.e., a monotone function from the subgroup lattice to the positive integers. We also investigate when the Chermak–Delgado measure, restricted to the centralizers, is increasing.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"123 3","pages":"241 - 251"},"PeriodicalIF":0.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-02015-8.pdf","citationCount":"0","resultStr":"{\"title\":\"The Chermak–Delgado measure as a map on posets\",\"authors\":\"William Cocke, Ryan McCulloch\",\"doi\":\"10.1007/s00013-024-02015-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Chermak–Delgado measure of a finite group is a function which assigns to each subgroup a positive integer. In this paper, we give necessary and sufficient conditions for when the Chermak–Delgado measure of a group is actually a map of posets, i.e., a monotone function from the subgroup lattice to the positive integers. We also investigate when the Chermak–Delgado measure, restricted to the centralizers, is increasing.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"123 3\",\"pages\":\"241 - 251\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-024-02015-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02015-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02015-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Chermak–Delgado measure of a finite group is a function which assigns to each subgroup a positive integer. In this paper, we give necessary and sufficient conditions for when the Chermak–Delgado measure of a group is actually a map of posets, i.e., a monotone function from the subgroup lattice to the positive integers. We also investigate when the Chermak–Delgado measure, restricted to the centralizers, is increasing.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.