{"title":"涉及对数拉普拉斯算子的乔夸尔方程正解的对称性和单调性","authors":"Linfen Cao, Xianwen Kang, Zhaohui Dai","doi":"10.1007/s11784-024-01121-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study a Schrödinger–Choquard equation involving the logarithmic Laplacian operator in <span>\\(\\mathbb {R}^{n}\\)</span>: </p><span>$$\\begin{aligned} \\mathcal {L}_\\triangle u(x)+\\omega u(x)=C_{n,s}(|x|^{2s-n}*u^{p})u^{r}, x\\in \\mathbb {R}^{n}, \\end{aligned}$$</span><p>where <span>\\(0<s<1,\\ p>1,\\ r>0,\\ n\\ge 2,\\ \\omega >0\\)</span>. Using the direct method of moving planes, we prove that if <i>u</i> satisfies some suitable asymptotic properties, then <i>u</i> must be radially symmetric and monotone decreasing about some point in the whole space. The key ingredients of the proofs are the narrow region principle and decay at infinity theorem; the ideas can be applied to problems involving more general nonlocal operators.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry and monotonicity of positive solutions for a Choquard equation involving the logarithmic Laplacian operator\",\"authors\":\"Linfen Cao, Xianwen Kang, Zhaohui Dai\",\"doi\":\"10.1007/s11784-024-01121-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study a Schrödinger–Choquard equation involving the logarithmic Laplacian operator in <span>\\\\(\\\\mathbb {R}^{n}\\\\)</span>: </p><span>$$\\\\begin{aligned} \\\\mathcal {L}_\\\\triangle u(x)+\\\\omega u(x)=C_{n,s}(|x|^{2s-n}*u^{p})u^{r}, x\\\\in \\\\mathbb {R}^{n}, \\\\end{aligned}$$</span><p>where <span>\\\\(0<s<1,\\\\ p>1,\\\\ r>0,\\\\ n\\\\ge 2,\\\\ \\\\omega >0\\\\)</span>. Using the direct method of moving planes, we prove that if <i>u</i> satisfies some suitable asymptotic properties, then <i>u</i> must be radially symmetric and monotone decreasing about some point in the whole space. The key ingredients of the proofs are the narrow region principle and decay at infinity theorem; the ideas can be applied to problems involving more general nonlocal operators.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11784-024-01121-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11784-024-01121-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文研究的是\(\mathbb {R}^{n}\) 中涉及对数拉普拉斯算子的薛定谔-乔夸德方程:$$\begin{aligned}\mathcal {L}_\triangle u(x)+\omega u(x)=C_{n,s}(|x|^{2s-n}*u^{p})u^{r}, x\in \mathbb {R}^{n}, \end{aligned}$$其中(0<s<1,\p>1,\r>0,\nge 2,\omega>0)。利用移动平面的直接方法,我们证明了如果 u 满足一些合适的渐近性质,那么 u 一定是径向对称的,并且围绕整个空间中的某一点单调递减。证明的关键要素是窄区域原理和无穷大衰减定理;这些思想可以应用于涉及更多一般非局部算子的问题。
where \(0<s<1,\ p>1,\ r>0,\ n\ge 2,\ \omega >0\). Using the direct method of moving planes, we prove that if u satisfies some suitable asymptotic properties, then u must be radially symmetric and monotone decreasing about some point in the whole space. The key ingredients of the proofs are the narrow region principle and decay at infinity theorem; the ideas can be applied to problems involving more general nonlocal operators.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.