涉及对数拉普拉斯算子的乔夸尔方程正解的对称性和单调性

IF 1.4 3区 数学 Q1 MATHEMATICS
Linfen Cao, Xianwen Kang, Zhaohui Dai
{"title":"涉及对数拉普拉斯算子的乔夸尔方程正解的对称性和单调性","authors":"Linfen Cao, Xianwen Kang, Zhaohui Dai","doi":"10.1007/s11784-024-01121-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study a Schrödinger–Choquard equation involving the logarithmic Laplacian operator in <span>\\(\\mathbb {R}^{n}\\)</span>: </p><span>$$\\begin{aligned} \\mathcal {L}_\\triangle u(x)+\\omega u(x)=C_{n,s}(|x|^{2s-n}*u^{p})u^{r}, x\\in \\mathbb {R}^{n}, \\end{aligned}$$</span><p>where <span>\\(0&lt;s&lt;1,\\ p&gt;1,\\ r&gt;0,\\ n\\ge 2,\\ \\omega &gt;0\\)</span>. Using the direct method of moving planes, we prove that if <i>u</i> satisfies some suitable asymptotic properties, then <i>u</i> must be radially symmetric and monotone decreasing about some point in the whole space. The key ingredients of the proofs are the narrow region principle and decay at infinity theorem; the ideas can be applied to problems involving more general nonlocal operators.</p>","PeriodicalId":54835,"journal":{"name":"Journal of Fixed Point Theory and Applications","volume":"3 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry and monotonicity of positive solutions for a Choquard equation involving the logarithmic Laplacian operator\",\"authors\":\"Linfen Cao, Xianwen Kang, Zhaohui Dai\",\"doi\":\"10.1007/s11784-024-01121-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study a Schrödinger–Choquard equation involving the logarithmic Laplacian operator in <span>\\\\(\\\\mathbb {R}^{n}\\\\)</span>: </p><span>$$\\\\begin{aligned} \\\\mathcal {L}_\\\\triangle u(x)+\\\\omega u(x)=C_{n,s}(|x|^{2s-n}*u^{p})u^{r}, x\\\\in \\\\mathbb {R}^{n}, \\\\end{aligned}$$</span><p>where <span>\\\\(0&lt;s&lt;1,\\\\ p&gt;1,\\\\ r&gt;0,\\\\ n\\\\ge 2,\\\\ \\\\omega &gt;0\\\\)</span>. Using the direct method of moving planes, we prove that if <i>u</i> satisfies some suitable asymptotic properties, then <i>u</i> must be radially symmetric and monotone decreasing about some point in the whole space. The key ingredients of the proofs are the narrow region principle and decay at infinity theorem; the ideas can be applied to problems involving more general nonlocal operators.</p>\",\"PeriodicalId\":54835,\"journal\":{\"name\":\"Journal of Fixed Point Theory and Applications\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fixed Point Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11784-024-01121-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fixed Point Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11784-024-01121-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究的是\(\mathbb {R}^{n}\) 中涉及对数拉普拉斯算子的薛定谔-乔夸德方程:$$\begin{aligned}\mathcal {L}_\triangle u(x)+\omega u(x)=C_{n,s}(|x|^{2s-n}*u^{p})u^{r}, x\in \mathbb {R}^{n}, \end{aligned}$$其中(0<s<1,\p>1,\r>0,\nge 2,\omega>0)。利用移动平面的直接方法,我们证明了如果 u 满足一些合适的渐近性质,那么 u 一定是径向对称的,并且围绕整个空间中的某一点单调递减。证明的关键要素是窄区域原理和无穷大衰减定理;这些思想可以应用于涉及更多一般非局部算子的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetry and monotonicity of positive solutions for a Choquard equation involving the logarithmic Laplacian operator

In this paper, we study a Schrödinger–Choquard equation involving the logarithmic Laplacian operator in \(\mathbb {R}^{n}\):

$$\begin{aligned} \mathcal {L}_\triangle u(x)+\omega u(x)=C_{n,s}(|x|^{2s-n}*u^{p})u^{r}, x\in \mathbb {R}^{n}, \end{aligned}$$

where \(0<s<1,\ p>1,\ r>0,\ n\ge 2,\ \omega >0\). Using the direct method of moving planes, we prove that if u satisfies some suitable asymptotic properties, then u must be radially symmetric and monotone decreasing about some point in the whole space. The key ingredients of the proofs are the narrow region principle and decay at infinity theorem; the ideas can be applied to problems involving more general nonlocal operators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
5.60%
发文量
68
审稿时长
>12 weeks
期刊介绍: The Journal of Fixed Point Theory and Applications (JFPTA) provides a publication forum for an important research in all disciplines in which the use of tools of fixed point theory plays an essential role. Research topics include but are not limited to: (i) New developments in fixed point theory as well as in related topological methods, in particular: Degree and fixed point index for various types of maps, Algebraic topology methods in the context of the Leray-Schauder theory, Lefschetz and Nielsen theories, Borsuk-Ulam type results, Vietoris fractions and fixed points for set-valued maps. (ii) Ramifications to global analysis, dynamical systems and symplectic topology, in particular: Degree and Conley Index in the study of non-linear phenomena, Lusternik-Schnirelmann and Morse theoretic methods, Floer Homology and Hamiltonian Systems, Elliptic complexes and the Atiyah-Bott fixed point theorem, Symplectic fixed point theorems and results related to the Arnold Conjecture. (iii) Significant applications in nonlinear analysis, mathematical economics and computation theory, in particular: Bifurcation theory and non-linear PDE-s, Convex analysis and variational inequalities, KKM-maps, theory of games and economics, Fixed point algorithms for computing fixed points. (iv) Contributions to important problems in geometry, fluid dynamics and mathematical physics, in particular: Global Riemannian geometry, Nonlinear problems in fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信