涉及对数拉普拉斯算子的乔夸尔方程正解的对称性和单调性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Linfen Cao, Xianwen Kang, Zhaohui Dai
{"title":"涉及对数拉普拉斯算子的乔夸尔方程正解的对称性和单调性","authors":"Linfen Cao, Xianwen Kang, Zhaohui Dai","doi":"10.1007/s11784-024-01121-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study a Schrödinger–Choquard equation involving the logarithmic Laplacian operator in <span>\\(\\mathbb {R}^{n}\\)</span>: </p><span>$$\\begin{aligned} \\mathcal {L}_\\triangle u(x)+\\omega u(x)=C_{n,s}(|x|^{2s-n}*u^{p})u^{r}, x\\in \\mathbb {R}^{n}, \\end{aligned}$$</span><p>where <span>\\(0&lt;s&lt;1,\\ p&gt;1,\\ r&gt;0,\\ n\\ge 2,\\ \\omega &gt;0\\)</span>. Using the direct method of moving planes, we prove that if <i>u</i> satisfies some suitable asymptotic properties, then <i>u</i> must be radially symmetric and monotone decreasing about some point in the whole space. The key ingredients of the proofs are the narrow region principle and decay at infinity theorem; the ideas can be applied to problems involving more general nonlocal operators.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry and monotonicity of positive solutions for a Choquard equation involving the logarithmic Laplacian operator\",\"authors\":\"Linfen Cao, Xianwen Kang, Zhaohui Dai\",\"doi\":\"10.1007/s11784-024-01121-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study a Schrödinger–Choquard equation involving the logarithmic Laplacian operator in <span>\\\\(\\\\mathbb {R}^{n}\\\\)</span>: </p><span>$$\\\\begin{aligned} \\\\mathcal {L}_\\\\triangle u(x)+\\\\omega u(x)=C_{n,s}(|x|^{2s-n}*u^{p})u^{r}, x\\\\in \\\\mathbb {R}^{n}, \\\\end{aligned}$$</span><p>where <span>\\\\(0&lt;s&lt;1,\\\\ p&gt;1,\\\\ r&gt;0,\\\\ n\\\\ge 2,\\\\ \\\\omega &gt;0\\\\)</span>. Using the direct method of moving planes, we prove that if <i>u</i> satisfies some suitable asymptotic properties, then <i>u</i> must be radially symmetric and monotone decreasing about some point in the whole space. The key ingredients of the proofs are the narrow region principle and decay at infinity theorem; the ideas can be applied to problems involving more general nonlocal operators.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11784-024-01121-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11784-024-01121-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究的是\(\mathbb {R}^{n}\) 中涉及对数拉普拉斯算子的薛定谔-乔夸德方程:$$\begin{aligned}\mathcal {L}_\triangle u(x)+\omega u(x)=C_{n,s}(|x|^{2s-n}*u^{p})u^{r}, x\in \mathbb {R}^{n}, \end{aligned}$$其中(0<s<1,\p>1,\r>0,\nge 2,\omega>0)。利用移动平面的直接方法,我们证明了如果 u 满足一些合适的渐近性质,那么 u 一定是径向对称的,并且围绕整个空间中的某一点单调递减。证明的关键要素是窄区域原理和无穷大衰减定理;这些思想可以应用于涉及更多一般非局部算子的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetry and monotonicity of positive solutions for a Choquard equation involving the logarithmic Laplacian operator

In this paper, we study a Schrödinger–Choquard equation involving the logarithmic Laplacian operator in \(\mathbb {R}^{n}\):

$$\begin{aligned} \mathcal {L}_\triangle u(x)+\omega u(x)=C_{n,s}(|x|^{2s-n}*u^{p})u^{r}, x\in \mathbb {R}^{n}, \end{aligned}$$

where \(0<s<1,\ p>1,\ r>0,\ n\ge 2,\ \omega >0\). Using the direct method of moving planes, we prove that if u satisfies some suitable asymptotic properties, then u must be radially symmetric and monotone decreasing about some point in the whole space. The key ingredients of the proofs are the narrow region principle and decay at infinity theorem; the ideas can be applied to problems involving more general nonlocal operators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信