环形规则权重诱导的伯格曼空间上算子的沙腾类性质和基本规范估计值

IF 1.1 2区 数学 Q1 MATHEMATICS
Wenjie Huang, Long Huang, Xiaofeng Wang
{"title":"环形规则权重诱导的伯格曼空间上算子的沙腾类性质和基本规范估计值","authors":"Wenjie Huang, Long Huang, Xiaofeng Wang","doi":"10.1007/s43037-024-00378-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper we first characterize the Schatten <i>p</i>-class and Schatten <i>h</i>-class Hankel and Toeplitz operators on Bergman spaces <span>\\(A_{\\omega _{1,2}}^2({\\mathbb {M}})\\)</span> induced by regular weights <span>\\(\\omega _{1,2}\\)</span> of the annulus <span>\\({\\mathbb {M}}\\)</span> with full range <span>\\(p\\in (0,\\infty )\\)</span> and <i>h</i> being a continuous increasing convex function on <span>\\((0,\\infty )\\)</span>. As an application, we then establish essential norm estimates for bounded Hankel operators from Bergman spaces <span>\\(A_{\\omega _{1,2}}^p({\\mathbb {M}})\\)</span> to Lebesgue spaces <span>\\(L_{\\omega _{1,2}}^q({\\mathbb {M}})\\)</span> for all possible <span>\\(p,q\\in (1, \\infty )\\)</span>. Moreover, Schatten <i>p</i>-class properties and essential norm estimates for Hankel operators on Bergman spaces over the unit disk <span>\\({\\mathbb {D}}\\)</span> induced by regular weights are also obtained, which can be viewed as a further application of boundedness and compactness of Hankel operators proved by Hu and Jin (J Geom Anal 29:3494–3519, 2019). To establish these desired characterizations, the diagonal and off-diagonal decompositions, various careful estimates for reproducing kernels, Berezin transforms, Carleson measures and the solution of <span>\\({\\bar{\\partial }}\\)</span>-equations are crucial tools in our proofs.</p>","PeriodicalId":55400,"journal":{"name":"Banach Journal of Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schatten class properties and essential norm estimates of operators on Bergman spaces induced by regular weights of annulus\",\"authors\":\"Wenjie Huang, Long Huang, Xiaofeng Wang\",\"doi\":\"10.1007/s43037-024-00378-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we first characterize the Schatten <i>p</i>-class and Schatten <i>h</i>-class Hankel and Toeplitz operators on Bergman spaces <span>\\\\(A_{\\\\omega _{1,2}}^2({\\\\mathbb {M}})\\\\)</span> induced by regular weights <span>\\\\(\\\\omega _{1,2}\\\\)</span> of the annulus <span>\\\\({\\\\mathbb {M}}\\\\)</span> with full range <span>\\\\(p\\\\in (0,\\\\infty )\\\\)</span> and <i>h</i> being a continuous increasing convex function on <span>\\\\((0,\\\\infty )\\\\)</span>. As an application, we then establish essential norm estimates for bounded Hankel operators from Bergman spaces <span>\\\\(A_{\\\\omega _{1,2}}^p({\\\\mathbb {M}})\\\\)</span> to Lebesgue spaces <span>\\\\(L_{\\\\omega _{1,2}}^q({\\\\mathbb {M}})\\\\)</span> for all possible <span>\\\\(p,q\\\\in (1, \\\\infty )\\\\)</span>. Moreover, Schatten <i>p</i>-class properties and essential norm estimates for Hankel operators on Bergman spaces over the unit disk <span>\\\\({\\\\mathbb {D}}\\\\)</span> induced by regular weights are also obtained, which can be viewed as a further application of boundedness and compactness of Hankel operators proved by Hu and Jin (J Geom Anal 29:3494–3519, 2019). To establish these desired characterizations, the diagonal and off-diagonal decompositions, various careful estimates for reproducing kernels, Berezin transforms, Carleson measures and the solution of <span>\\\\({\\\\bar{\\\\partial }}\\\\)</span>-equations are crucial tools in our proofs.</p>\",\"PeriodicalId\":55400,\"journal\":{\"name\":\"Banach Journal of Mathematical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Banach Journal of Mathematical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s43037-024-00378-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Banach Journal of Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-024-00378-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先描述了伯格曼空间(A_{\omega _{1,2}}^2({\mathbb {M}}))上的 Schatten p 类和 Schatten h 类 Hankel 和 Toeplitz 算子的特征,这些算子是由(\omega _{1、2}) 的环面 \({\mathbb {M}}\) 的全范围 \(p\in (0,\infty )\) 和 h 是 \((0,\infty )\) 上的连续递增凸函数。作为应用,我们为有界汉克尔算子建立了从伯格曼空间(A_{\omega _{1,2}^p({\mathbb {M}})到勒贝格空间(L_{\omega _{1,2}^q({\mathbb {M}})的基本规范估计,适用于所有可能的(p,q\in (1,\infty ))。此外,还得到了由正则权重诱导的单位盘 \({\mathbb {D}}\) 上伯格曼空间的汉克尔算子的 Schatten p 类性质和基本规范估计,这可以看作是胡和金(J Geom Anal 29:3494-3519, 2019)证明的汉克尔算子的有界性和紧凑性的进一步应用。为了建立这些所需的特征,对角线和非对角线分解、对重现核的各种细致估计、Berezin变换、Carleson度量以及\({\bar{\partial }}\)-方程的解都是我们证明中的关键工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Schatten class properties and essential norm estimates of operators on Bergman spaces induced by regular weights of annulus

In this paper we first characterize the Schatten p-class and Schatten h-class Hankel and Toeplitz operators on Bergman spaces \(A_{\omega _{1,2}}^2({\mathbb {M}})\) induced by regular weights \(\omega _{1,2}\) of the annulus \({\mathbb {M}}\) with full range \(p\in (0,\infty )\) and h being a continuous increasing convex function on \((0,\infty )\). As an application, we then establish essential norm estimates for bounded Hankel operators from Bergman spaces \(A_{\omega _{1,2}}^p({\mathbb {M}})\) to Lebesgue spaces \(L_{\omega _{1,2}}^q({\mathbb {M}})\) for all possible \(p,q\in (1, \infty )\). Moreover, Schatten p-class properties and essential norm estimates for Hankel operators on Bergman spaces over the unit disk \({\mathbb {D}}\) induced by regular weights are also obtained, which can be viewed as a further application of boundedness and compactness of Hankel operators proved by Hu and Jin (J Geom Anal 29:3494–3519, 2019). To establish these desired characterizations, the diagonal and off-diagonal decompositions, various careful estimates for reproducing kernels, Berezin transforms, Carleson measures and the solution of \({\bar{\partial }}\)-equations are crucial tools in our proofs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
67
审稿时长
>12 weeks
期刊介绍: The Banach Journal of Mathematical Analysis (Banach J. Math. Anal.) is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Banach J. Math. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and operator theory and all modern related topics. Banach J. Math. Anal. normally publishes survey articles and original research papers numbering 15 pages or more in the journal’s style. Shorter papers may be submitted to the Annals of Functional Analysis or Advances in Operator Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信