第 1 类对角线子代数的广义内插法

IF 1.1 2区 数学 Q1 MATHEMATICS
Xia Jiao, Guoxing Ji
{"title":"第 1 类对角线子代数的广义内插法","authors":"Xia Jiao, Guoxing Ji","doi":"10.1007/s43037-024-00381-7","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\({\\mathfrak {A}}\\)</span> be a maximal subdiagonal algebra with diagonal <span>\\({\\mathfrak {D}}\\)</span> in a <span>\\(\\sigma \\)</span>-finite von Neumann algebra <span>\\({\\mathcal {M}}\\)</span> with respect to a faithful normal conditional expectation <span>\\(\\Phi \\)</span>. We firstly give a type decomposition of an invariant subspace <span>\\({\\mathfrak {M}}\\)</span> of <span>\\({\\mathfrak {A}}\\)</span> in the acting Hilbert space. We then revisit certain useful properties of type 1 subdiagonal algebras. It is shown that a two-sided invariant subspace <span>\\({\\mathfrak {M}}\\)</span> in the noncommutative <span>\\(H^2\\)</span> space has the form <span>\\({\\mathfrak {M}}=\\oplus _{n\\ge 1}^{col}W_nH^2\\)</span> for a family of partial isometries <span>\\(\\{W_n:n\\ge 1\\}\\)</span> satisfying <span>\\( W_n^*W_m=0\\)</span> when <span>\\(n\\not =m\\)</span>, <span>\\(W_n^*W_n\\in {\\mathfrak {D}}\\)</span> and <span>\\(\\sum _{n\\ge 1} W_nW_n^*=I\\)</span> if <span>\\({\\mathfrak {D}}\\)</span> is a factor. Furthermore, we give a noncommutative version of the Sarason’s generalized interpolation theorem for such a two-sided invariant subspace of a type 1 subdiagonal algebra.</p>","PeriodicalId":55400,"journal":{"name":"Banach Journal of Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized interpolation for type 1 subdiagonal algebras\",\"authors\":\"Xia Jiao, Guoxing Ji\",\"doi\":\"10.1007/s43037-024-00381-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\({\\\\mathfrak {A}}\\\\)</span> be a maximal subdiagonal algebra with diagonal <span>\\\\({\\\\mathfrak {D}}\\\\)</span> in a <span>\\\\(\\\\sigma \\\\)</span>-finite von Neumann algebra <span>\\\\({\\\\mathcal {M}}\\\\)</span> with respect to a faithful normal conditional expectation <span>\\\\(\\\\Phi \\\\)</span>. We firstly give a type decomposition of an invariant subspace <span>\\\\({\\\\mathfrak {M}}\\\\)</span> of <span>\\\\({\\\\mathfrak {A}}\\\\)</span> in the acting Hilbert space. We then revisit certain useful properties of type 1 subdiagonal algebras. It is shown that a two-sided invariant subspace <span>\\\\({\\\\mathfrak {M}}\\\\)</span> in the noncommutative <span>\\\\(H^2\\\\)</span> space has the form <span>\\\\({\\\\mathfrak {M}}=\\\\oplus _{n\\\\ge 1}^{col}W_nH^2\\\\)</span> for a family of partial isometries <span>\\\\(\\\\{W_n:n\\\\ge 1\\\\}\\\\)</span> satisfying <span>\\\\( W_n^*W_m=0\\\\)</span> when <span>\\\\(n\\\\not =m\\\\)</span>, <span>\\\\(W_n^*W_n\\\\in {\\\\mathfrak {D}}\\\\)</span> and <span>\\\\(\\\\sum _{n\\\\ge 1} W_nW_n^*=I\\\\)</span> if <span>\\\\({\\\\mathfrak {D}}\\\\)</span> is a factor. Furthermore, we give a noncommutative version of the Sarason’s generalized interpolation theorem for such a two-sided invariant subspace of a type 1 subdiagonal algebra.</p>\",\"PeriodicalId\":55400,\"journal\":{\"name\":\"Banach Journal of Mathematical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Banach Journal of Mathematical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s43037-024-00381-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Banach Journal of Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-024-00381-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \({\mathfrak {A}}\) 是一个最大对角线代数,在一个 \(\sigma \)-无限冯-诺依曼代数 \({\mathcal {M}}\) 中具有对角线 \({\mathfrak {D}}\) ,关于一个忠实的正态条件期望 \(\Phi \)。我们首先给出了作用希尔伯特空间中\({\mathfrak {M}}\)的不变子空间\({\mathfrak {A}}\)的类型分解。然后,我们重温了类型 1 子对角代数的某些有用性质。研究表明,非交换\(H^2\)空间中的双面不变子空间对于偏等分线族具有形式\({mathfrak {M}}=\oplus _{n\ge 1}^{col}W_nH^2\):(n/not=m/)时满足(W_n^*W_m=0/),(W_n^*W_n/in {\mathfrak {D}}/)时满足(W_n^*W_n/in {\mathfrak {D}}/),(({/mathfrak {D}}/)是因子时满足((\sum _{n\ge 1} W_nW_n^*=I/)。此外,我们还给出了针对这种 1 型对角线代数的双面不变子空间的萨拉森广义插值定理的非交换版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized interpolation for type 1 subdiagonal algebras

Let \({\mathfrak {A}}\) be a maximal subdiagonal algebra with diagonal \({\mathfrak {D}}\) in a \(\sigma \)-finite von Neumann algebra \({\mathcal {M}}\) with respect to a faithful normal conditional expectation \(\Phi \). We firstly give a type decomposition of an invariant subspace \({\mathfrak {M}}\) of \({\mathfrak {A}}\) in the acting Hilbert space. We then revisit certain useful properties of type 1 subdiagonal algebras. It is shown that a two-sided invariant subspace \({\mathfrak {M}}\) in the noncommutative \(H^2\) space has the form \({\mathfrak {M}}=\oplus _{n\ge 1}^{col}W_nH^2\) for a family of partial isometries \(\{W_n:n\ge 1\}\) satisfying \( W_n^*W_m=0\) when \(n\not =m\), \(W_n^*W_n\in {\mathfrak {D}}\) and \(\sum _{n\ge 1} W_nW_n^*=I\) if \({\mathfrak {D}}\) is a factor. Furthermore, we give a noncommutative version of the Sarason’s generalized interpolation theorem for such a two-sided invariant subspace of a type 1 subdiagonal algebra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
67
审稿时长
>12 weeks
期刊介绍: The Banach Journal of Mathematical Analysis (Banach J. Math. Anal.) is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Banach J. Math. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and operator theory and all modern related topics. Banach J. Math. Anal. normally publishes survey articles and original research papers numbering 15 pages or more in the journal’s style. Shorter papers may be submitted to the Annals of Functional Analysis or Advances in Operator Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信