{"title":"薄域上耗散动力系统不变量的逼近","authors":"Dingshi Li, Ran Li","doi":"10.1007/s43037-024-00384-4","DOIUrl":null,"url":null,"abstract":"<p>An abstract method is presented to show that upper semicontinuity of invariant measures of dissipative dynamical systems on thin domains. The abstract method presented can be used to many physical systems. As an example, we consider reaction-diffusion equations on thin domains. To this end, we first show the existence of invariant measures of the equations in a bounded domain in <span>\\(\\mathbb {R}^{n+1}\\)</span> which can be viewed as a perturbation of a bounded domain in <span>\\(\\mathbb {R}^n\\)</span>. We then prove that any limit of invariant measures of the perturbed systems must be an invariant measure of the limiting system when the thin domains collapses.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation of invariant measures of dissipative dynamical systems on thin domains\",\"authors\":\"Dingshi Li, Ran Li\",\"doi\":\"10.1007/s43037-024-00384-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An abstract method is presented to show that upper semicontinuity of invariant measures of dissipative dynamical systems on thin domains. The abstract method presented can be used to many physical systems. As an example, we consider reaction-diffusion equations on thin domains. To this end, we first show the existence of invariant measures of the equations in a bounded domain in <span>\\\\(\\\\mathbb {R}^{n+1}\\\\)</span> which can be viewed as a perturbation of a bounded domain in <span>\\\\(\\\\mathbb {R}^n\\\\)</span>. We then prove that any limit of invariant measures of the perturbed systems must be an invariant measure of the limiting system when the thin domains collapses.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s43037-024-00384-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-024-00384-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Approximation of invariant measures of dissipative dynamical systems on thin domains
An abstract method is presented to show that upper semicontinuity of invariant measures of dissipative dynamical systems on thin domains. The abstract method presented can be used to many physical systems. As an example, we consider reaction-diffusion equations on thin domains. To this end, we first show the existence of invariant measures of the equations in a bounded domain in \(\mathbb {R}^{n+1}\) which can be viewed as a perturbation of a bounded domain in \(\mathbb {R}^n\). We then prove that any limit of invariant measures of the perturbed systems must be an invariant measure of the limiting system when the thin domains collapses.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.