在 TiO2 纳米片上沉积 Mn0.5Cd0.5S 纳米粒子的简便原位构建策略,用于高效可见光光催化降解四环素

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Liezhen Zhu , Jing Liu , Youliang Shen , Lingfang Qiu , Xun Xu , Jiangbo Xi , Deliang Li , Ping Li , Shuwang Duo
{"title":"在 TiO2 纳米片上沉积 Mn0.5Cd0.5S 纳米粒子的简便原位构建策略,用于高效可见光光催化降解四环素","authors":"Liezhen Zhu ,&nbsp;Jing Liu ,&nbsp;Youliang Shen ,&nbsp;Lingfang Qiu ,&nbsp;Xun Xu ,&nbsp;Jiangbo Xi ,&nbsp;Deliang Li ,&nbsp;Ping Li ,&nbsp;Shuwang Duo","doi":"10.1039/d4cy00868e","DOIUrl":null,"url":null,"abstract":"<div><div>Developing a highly efficient visible-light-driven TiO<sub>2</sub>-based photocatalyst for the degradation of tetracycline remains challenging due to the high photogenerated electron/hole recombination rate and narrow visible light response range of TiO<sub>2</sub>. To address these problems, novel heterojunctions are fabricated by coupling TiO<sub>2</sub> nanosheets with Mn<sub>0.5</sub>Cd<sub>0.5</sub>S nanoparticles as visible-light photocatalysts. The as-synthesized photocatalysts exhibit high photogenerated electron/hole separation efficiency and enhanced visible-light absorption due to the well-matched energy levels, leading to the highly efficient degradation of tetracycline under visible light irradiation and excellent recyclability. The degradation efficiency of the optimum MCS/TiO<sub>2</sub>-II photocatalyst could reach 90% within 120 min, which was about 2.5 times and 6.9 times higher than those of MCS and TiO<sub>2</sub>, respectively. Furthermore, the degradation mechanism of tetracycline was revealed in depth based on the trapping experiments, XPS, photoelectrochemical characterizations, and DFT calculations. Therefore, this work provides an effective approach to explore excellent photocatalysts to realize the highly efficient removal of refractory tetracycline under visible light.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile in situ construction strategy to deposit Mn0.5Cd0.5S nanoparticles on TiO2 nanosheets for highly efficient visible light photocatalytic degradation of tetracycline\",\"authors\":\"Liezhen Zhu ,&nbsp;Jing Liu ,&nbsp;Youliang Shen ,&nbsp;Lingfang Qiu ,&nbsp;Xun Xu ,&nbsp;Jiangbo Xi ,&nbsp;Deliang Li ,&nbsp;Ping Li ,&nbsp;Shuwang Duo\",\"doi\":\"10.1039/d4cy00868e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Developing a highly efficient visible-light-driven TiO<sub>2</sub>-based photocatalyst for the degradation of tetracycline remains challenging due to the high photogenerated electron/hole recombination rate and narrow visible light response range of TiO<sub>2</sub>. To address these problems, novel heterojunctions are fabricated by coupling TiO<sub>2</sub> nanosheets with Mn<sub>0.5</sub>Cd<sub>0.5</sub>S nanoparticles as visible-light photocatalysts. The as-synthesized photocatalysts exhibit high photogenerated electron/hole separation efficiency and enhanced visible-light absorption due to the well-matched energy levels, leading to the highly efficient degradation of tetracycline under visible light irradiation and excellent recyclability. The degradation efficiency of the optimum MCS/TiO<sub>2</sub>-II photocatalyst could reach 90% within 120 min, which was about 2.5 times and 6.9 times higher than those of MCS and TiO<sub>2</sub>, respectively. Furthermore, the degradation mechanism of tetracycline was revealed in depth based on the trapping experiments, XPS, photoelectrochemical characterizations, and DFT calculations. Therefore, this work provides an effective approach to explore excellent photocatalysts to realize the highly efficient removal of refractory tetracycline under visible light.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2044475324004775\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324004775","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于二氧化钛的光生电子/空穴重组率高和可见光响应范围窄,开发一种高效的可见光驱动的二氧化钛基光催化剂来降解四环素仍然具有挑战性。为了解决这些问题,研究人员通过将 TiO2 纳米片与 Mn0.5Cd0.5S 纳米颗粒耦合,制备出新型异质结,作为可见光光催化剂。由于能级匹配良好,所合成的光催化剂表现出较高的光生电子/空穴分离效率和较强的可见光吸收能力,从而在可见光照射下高效降解四环素,并具有良好的可回收性。最佳 MCS/TiO2-II 光催化剂在 120 分钟内的降解效率可达 90%,分别是 MCS 和 TiO2 的 2.5 倍和 6.9 倍。此外,基于捕集实验、XPS、光电化学表征和 DFT 计算,深入揭示了四环素的降解机理。因此,这项工作为探索在可见光下实现高效去除难降解四环素的优异光催化剂提供了有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Facile in situ construction strategy to deposit Mn0.5Cd0.5S nanoparticles on TiO2 nanosheets for highly efficient visible light photocatalytic degradation of tetracycline

Facile in situ construction strategy to deposit Mn0.5Cd0.5S nanoparticles on TiO2 nanosheets for highly efficient visible light photocatalytic degradation of tetracycline

Facile in situ construction strategy to deposit Mn0.5Cd0.5S nanoparticles on TiO2 nanosheets for highly efficient visible light photocatalytic degradation of tetracycline
Developing a highly efficient visible-light-driven TiO2-based photocatalyst for the degradation of tetracycline remains challenging due to the high photogenerated electron/hole recombination rate and narrow visible light response range of TiO2. To address these problems, novel heterojunctions are fabricated by coupling TiO2 nanosheets with Mn0.5Cd0.5S nanoparticles as visible-light photocatalysts. The as-synthesized photocatalysts exhibit high photogenerated electron/hole separation efficiency and enhanced visible-light absorption due to the well-matched energy levels, leading to the highly efficient degradation of tetracycline under visible light irradiation and excellent recyclability. The degradation efficiency of the optimum MCS/TiO2-II photocatalyst could reach 90% within 120 min, which was about 2.5 times and 6.9 times higher than those of MCS and TiO2, respectively. Furthermore, the degradation mechanism of tetracycline was revealed in depth based on the trapping experiments, XPS, photoelectrochemical characterizations, and DFT calculations. Therefore, this work provides an effective approach to explore excellent photocatalysts to realize the highly efficient removal of refractory tetracycline under visible light.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信