未定性、基因高度多样化的噬菌体在高纬度北极地区占据主导地位

Audree Lemieux, Alexandre J Poulain, Stephane Aris-Brosou
{"title":"未定性、基因高度多样化的噬菌体在高纬度北极地区占据主导地位","authors":"Audree Lemieux, Alexandre J Poulain, Stephane Aris-Brosou","doi":"10.1101/2024.09.10.612304","DOIUrl":null,"url":null,"abstract":"While the Earth's virosphere is estimated to be in the range of 10^31 viral particles, the vast majority of its diversity has yet to be discovered. In recent years, metagenomics has rapidly allowed the identification of viruses, from microenvironments to extreme environments like the High Arctic. However, the High Arctic virome is largely composed of viral sequences that have few, if any, matches to classified viruses in existing databases. Here, to bypass limitations posed by similarity-based strategies, we resorted to a metagenomics approach that placed viral genes found in Lake Hazen, a High Arctic lake, in a phylogenetic context with known viruses. We show that while High Arctic viruses clustered with known bacteriophages, they have undergone unique evolutionary processes characterized by high evolutionary rates, making them distinct from and more diverse than known viruses. A better understanding of how viruses from extreme polar conditions adapt and evolve could help us gain insights on the viral response to climate change and other environmental stressors.","PeriodicalId":501183,"journal":{"name":"bioRxiv - Evolutionary Biology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The High Arctic is dominated by uncharacterized, genetically highly diverse bacteriophages\",\"authors\":\"Audree Lemieux, Alexandre J Poulain, Stephane Aris-Brosou\",\"doi\":\"10.1101/2024.09.10.612304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While the Earth's virosphere is estimated to be in the range of 10^31 viral particles, the vast majority of its diversity has yet to be discovered. In recent years, metagenomics has rapidly allowed the identification of viruses, from microenvironments to extreme environments like the High Arctic. However, the High Arctic virome is largely composed of viral sequences that have few, if any, matches to classified viruses in existing databases. Here, to bypass limitations posed by similarity-based strategies, we resorted to a metagenomics approach that placed viral genes found in Lake Hazen, a High Arctic lake, in a phylogenetic context with known viruses. We show that while High Arctic viruses clustered with known bacteriophages, they have undergone unique evolutionary processes characterized by high evolutionary rates, making them distinct from and more diverse than known viruses. A better understanding of how viruses from extreme polar conditions adapt and evolve could help us gain insights on the viral response to climate change and other environmental stressors.\",\"PeriodicalId\":501183,\"journal\":{\"name\":\"bioRxiv - Evolutionary Biology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Evolutionary Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.10.612304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Evolutionary Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.10.612304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

据估计,地球上的病毒球大约有 10^31 个病毒颗粒,但其绝大多数多样性尚未被发现。近年来,元基因组学技术迅速鉴定了从微环境到北极等极端环境中的病毒。然而,高纬度地区的病毒组主要由病毒序列组成,与现有数据库中的分类病毒几乎没有任何匹配。在这里,为了绕过基于相似性的策略所带来的限制,我们采用了一种元基因组学方法,将在高纬度地区的哈森湖(Lake Hazen)中发现的病毒基因与已知病毒放在一个系统发育背景中。我们发现,虽然高纬度地区的病毒与已知的噬菌体聚集在一起,但它们经历了以高进化率为特征的独特进化过程,使它们与已知病毒截然不同,而且比已知病毒更加多样化。更好地了解极端极地条件下的病毒是如何适应和进化的,有助于我们深入了解病毒对气候变化和其他环境压力的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The High Arctic is dominated by uncharacterized, genetically highly diverse bacteriophages
While the Earth's virosphere is estimated to be in the range of 10^31 viral particles, the vast majority of its diversity has yet to be discovered. In recent years, metagenomics has rapidly allowed the identification of viruses, from microenvironments to extreme environments like the High Arctic. However, the High Arctic virome is largely composed of viral sequences that have few, if any, matches to classified viruses in existing databases. Here, to bypass limitations posed by similarity-based strategies, we resorted to a metagenomics approach that placed viral genes found in Lake Hazen, a High Arctic lake, in a phylogenetic context with known viruses. We show that while High Arctic viruses clustered with known bacteriophages, they have undergone unique evolutionary processes characterized by high evolutionary rates, making them distinct from and more diverse than known viruses. A better understanding of how viruses from extreme polar conditions adapt and evolve could help us gain insights on the viral response to climate change and other environmental stressors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信