利用大型语言模型完善维基数据分类法

Yiwen PengIP Paris, Thomas BonaldIP Paris, Mehwish AlamIP Paris
{"title":"利用大型语言模型完善维基数据分类法","authors":"Yiwen PengIP Paris, Thomas BonaldIP Paris, Mehwish AlamIP Paris","doi":"arxiv-2409.04056","DOIUrl":null,"url":null,"abstract":"Due to its collaborative nature, Wikidata is known to have a complex\ntaxonomy, with recurrent issues like the ambiguity between instances and\nclasses, the inaccuracy of some taxonomic paths, the presence of cycles, and\nthe high level of redundancy across classes. Manual efforts to clean up this\ntaxonomy are time-consuming and prone to errors or subjective decisions. We\npresent WiKC, a new version of Wikidata taxonomy cleaned automatically using a\ncombination of Large Language Models (LLMs) and graph mining techniques.\nOperations on the taxonomy, such as cutting links or merging classes, are\nperformed with the help of zero-shot prompting on an open-source LLM. The\nquality of the refined taxonomy is evaluated from both intrinsic and extrinsic\nperspectives, on a task of entity typing for the latter, showing the practical\ninterest of WiKC.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refining Wikidata Taxonomy using Large Language Models\",\"authors\":\"Yiwen PengIP Paris, Thomas BonaldIP Paris, Mehwish AlamIP Paris\",\"doi\":\"arxiv-2409.04056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to its collaborative nature, Wikidata is known to have a complex\\ntaxonomy, with recurrent issues like the ambiguity between instances and\\nclasses, the inaccuracy of some taxonomic paths, the presence of cycles, and\\nthe high level of redundancy across classes. Manual efforts to clean up this\\ntaxonomy are time-consuming and prone to errors or subjective decisions. We\\npresent WiKC, a new version of Wikidata taxonomy cleaned automatically using a\\ncombination of Large Language Models (LLMs) and graph mining techniques.\\nOperations on the taxonomy, such as cutting links or merging classes, are\\nperformed with the help of zero-shot prompting on an open-source LLM. The\\nquality of the refined taxonomy is evaluated from both intrinsic and extrinsic\\nperspectives, on a task of entity typing for the latter, showing the practical\\ninterest of WiKC.\",\"PeriodicalId\":501281,\"journal\":{\"name\":\"arXiv - CS - Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于维基数据的协作性质,众所周知它的分类标准非常复杂,经常出现的问题包括实例和类之间的模糊性、某些分类路径的不准确性、循环的存在以及类之间的高度冗余。人工清理这种分类法既费时又容易出错或做出主观决定。我们介绍的 WiKC 是维基数据分类法的一个新版本,它采用大型语言模型(LLM)和图挖掘技术相结合的方式进行自动清理。在开源 LLM 的零点提示帮助下,对分类法进行剪切链接或合并类别等操作。从内在和外在两个角度对改进后的分类法的质量进行了评估,并对后者的实体键入任务进行了评估,从而显示了 WiKC 的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refining Wikidata Taxonomy using Large Language Models
Due to its collaborative nature, Wikidata is known to have a complex taxonomy, with recurrent issues like the ambiguity between instances and classes, the inaccuracy of some taxonomic paths, the presence of cycles, and the high level of redundancy across classes. Manual efforts to clean up this taxonomy are time-consuming and prone to errors or subjective decisions. We present WiKC, a new version of Wikidata taxonomy cleaned automatically using a combination of Large Language Models (LLMs) and graph mining techniques. Operations on the taxonomy, such as cutting links or merging classes, are performed with the help of zero-shot prompting on an open-source LLM. The quality of the refined taxonomy is evaluated from both intrinsic and extrinsic perspectives, on a task of entity typing for the latter, showing the practical interest of WiKC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信