晚期分块:使用长语境嵌入模型进行语境分块嵌入

Michael Günther, Isabelle Mohr, Bo Wang, Han Xiao
{"title":"晚期分块:使用长语境嵌入模型进行语境分块嵌入","authors":"Michael Günther, Isabelle Mohr, Bo Wang, Han Xiao","doi":"arxiv-2409.04701","DOIUrl":null,"url":null,"abstract":"Many use cases require retrieving smaller portions of text, and dense\nvector-based retrieval systems often perform better with shorter text segments,\nas the semantics are less likely to be \"over-compressed\" in the embeddings.\nConsequently, practitioners often split text documents into smaller chunks and\nencode them separately. However, chunk embeddings created in this way can lose\ncontextual information from surrounding chunks, resulting in suboptimal\nrepresentations. In this paper, we introduce a novel method called \"late\nchunking,\" which leverages long context embedding models to first embed all\ntokens of the long text, with chunking applied after the transformer model and\njust before mean pooling. The resulting chunk embeddings capture the full\ncontextual information, leading to superior results across various retrieval\ntasks without the need for additional training. Moreover, our method is generic\nenough to be applied to any long-context embedding model.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Late Chunking: Contextual Chunk Embeddings Using Long-Context Embedding Models\",\"authors\":\"Michael Günther, Isabelle Mohr, Bo Wang, Han Xiao\",\"doi\":\"arxiv-2409.04701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many use cases require retrieving smaller portions of text, and dense\\nvector-based retrieval systems often perform better with shorter text segments,\\nas the semantics are less likely to be \\\"over-compressed\\\" in the embeddings.\\nConsequently, practitioners often split text documents into smaller chunks and\\nencode them separately. However, chunk embeddings created in this way can lose\\ncontextual information from surrounding chunks, resulting in suboptimal\\nrepresentations. In this paper, we introduce a novel method called \\\"late\\nchunking,\\\" which leverages long context embedding models to first embed all\\ntokens of the long text, with chunking applied after the transformer model and\\njust before mean pooling. The resulting chunk embeddings capture the full\\ncontextual information, leading to superior results across various retrieval\\ntasks without the need for additional training. Moreover, our method is generic\\nenough to be applied to any long-context embedding model.\",\"PeriodicalId\":501281,\"journal\":{\"name\":\"arXiv - CS - Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多用例需要检索文本的较小部分,而基于密集向量的检索系统通常在检索较短的文本片段时表现更好,因为语义不太可能在嵌入中被 "过度压缩"。然而,以这种方式创建的块嵌入可能会丢失周围块的上下文信息,从而导致次优表达。在本文中,我们介绍了一种名为 "晚分块 "的新方法,它利用长上下文嵌入模型首先嵌入长文本的所有标记,在转换器模型之后和均值池之前应用分块。由此产生的分块嵌入可以捕捉到完整的上下文信息,从而在各种检索任务中取得优异的结果,而无需额外的训练。此外,我们的方法具有通用性,可以应用于任何长文本嵌入模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Late Chunking: Contextual Chunk Embeddings Using Long-Context Embedding Models
Many use cases require retrieving smaller portions of text, and dense vector-based retrieval systems often perform better with shorter text segments, as the semantics are less likely to be "over-compressed" in the embeddings. Consequently, practitioners often split text documents into smaller chunks and encode them separately. However, chunk embeddings created in this way can lose contextual information from surrounding chunks, resulting in suboptimal representations. In this paper, we introduce a novel method called "late chunking," which leverages long context embedding models to first embed all tokens of the long text, with chunking applied after the transformer model and just before mean pooling. The resulting chunk embeddings capture the full contextual information, leading to superior results across various retrieval tasks without the need for additional training. Moreover, our method is generic enough to be applied to any long-context embedding model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信