OneGen:LLM 的高效单程统一生成和检索

Jintian Zhang, Cheng Peng, Mengshu Sun, Xiang Chen, Lei Liang, Zhiqiang Zhang, Jun Zhou, Huajun Chen, Ningyu Zhang
{"title":"OneGen:LLM 的高效单程统一生成和检索","authors":"Jintian Zhang, Cheng Peng, Mengshu Sun, Xiang Chen, Lei Liang, Zhiqiang Zhang, Jun Zhou, Huajun Chen, Ningyu Zhang","doi":"arxiv-2409.05152","DOIUrl":null,"url":null,"abstract":"Despite the recent advancements in Large Language Models (LLMs), which have\nsignificantly enhanced the generative capabilities for various NLP tasks, LLMs\nstill face limitations in directly handling retrieval tasks. However, many\npractical applications demand the seamless integration of both retrieval and\ngeneration. This paper introduces a novel and efficient One-pass Generation and\nretrieval framework (OneGen), designed to improve LLMs' performance on tasks\nthat require both generation and retrieval. The proposed framework bridges the\ntraditionally separate training approaches for generation and retrieval by\nincorporating retrieval tokens generated autoregressively. This enables a\nsingle LLM to handle both tasks simultaneously in a unified forward pass. We\nconduct experiments on two distinct types of composite tasks, RAG and Entity\nLinking, to validate the pluggability, effectiveness, and efficiency of OneGen\nin training and inference. Furthermore, our results show that integrating\ngeneration and retrieval within the same context preserves the generative\ncapabilities of LLMs while improving retrieval performance. To the best of our\nknowledge, OneGen is the first to enable LLMs to conduct vector retrieval\nduring the generation.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OneGen: Efficient One-Pass Unified Generation and Retrieval for LLMs\",\"authors\":\"Jintian Zhang, Cheng Peng, Mengshu Sun, Xiang Chen, Lei Liang, Zhiqiang Zhang, Jun Zhou, Huajun Chen, Ningyu Zhang\",\"doi\":\"arxiv-2409.05152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the recent advancements in Large Language Models (LLMs), which have\\nsignificantly enhanced the generative capabilities for various NLP tasks, LLMs\\nstill face limitations in directly handling retrieval tasks. However, many\\npractical applications demand the seamless integration of both retrieval and\\ngeneration. This paper introduces a novel and efficient One-pass Generation and\\nretrieval framework (OneGen), designed to improve LLMs' performance on tasks\\nthat require both generation and retrieval. The proposed framework bridges the\\ntraditionally separate training approaches for generation and retrieval by\\nincorporating retrieval tokens generated autoregressively. This enables a\\nsingle LLM to handle both tasks simultaneously in a unified forward pass. We\\nconduct experiments on two distinct types of composite tasks, RAG and Entity\\nLinking, to validate the pluggability, effectiveness, and efficiency of OneGen\\nin training and inference. Furthermore, our results show that integrating\\ngeneration and retrieval within the same context preserves the generative\\ncapabilities of LLMs while improving retrieval performance. To the best of our\\nknowledge, OneGen is the first to enable LLMs to conduct vector retrieval\\nduring the generation.\",\"PeriodicalId\":501281,\"journal\":{\"name\":\"arXiv - CS - Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管大语言模型(LLMs)最近取得了长足的进步,大大增强了各种 NLP 任务的生成能力,但 LLMs 在直接处理检索任务方面仍然面临着局限性。然而,许多实际应用都需要检索和生成的无缝集成。本文介绍了一种新颖高效的 "一次生成和检索 "框架(OneGen),旨在提高 LLM 在同时需要生成和检索的任务中的性能。所提出的框架将自回归生成的检索标记纳入其中,从而弥合了传统上分别生成和检索的训练方法。这使得单个 LLM 可以在统一的前向传递中同时处理这两个任务。我们对 RAG 和 EntityLinking 两种不同类型的复合任务进行了实验,验证了 OneGenin 训练和推理的可插拔性、有效性和效率。此外,我们的结果表明,将生成和检索整合在同一上下文中,既能保留 LLM 的生成能力,又能提高检索性能。据我们所知,OneGen 是第一个能让 LLM 在生成过程中进行向量检索的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OneGen: Efficient One-Pass Unified Generation and Retrieval for LLMs
Despite the recent advancements in Large Language Models (LLMs), which have significantly enhanced the generative capabilities for various NLP tasks, LLMs still face limitations in directly handling retrieval tasks. However, many practical applications demand the seamless integration of both retrieval and generation. This paper introduces a novel and efficient One-pass Generation and retrieval framework (OneGen), designed to improve LLMs' performance on tasks that require both generation and retrieval. The proposed framework bridges the traditionally separate training approaches for generation and retrieval by incorporating retrieval tokens generated autoregressively. This enables a single LLM to handle both tasks simultaneously in a unified forward pass. We conduct experiments on two distinct types of composite tasks, RAG and Entity Linking, to validate the pluggability, effectiveness, and efficiency of OneGen in training and inference. Furthermore, our results show that integrating generation and retrieval within the same context preserves the generative capabilities of LLMs while improving retrieval performance. To the best of our knowledge, OneGen is the first to enable LLMs to conduct vector retrieval during the generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信