跨域推荐的统一框架

Jiangxia Cao, Shen Wang, Gaode Chen, Rui Huang, Shuang Yang, Zhaojie Liu, Guorui Zhou
{"title":"跨域推荐的统一框架","authors":"Jiangxia Cao, Shen Wang, Gaode Chen, Rui Huang, Shuang Yang, Zhaojie Liu, Guorui Zhou","doi":"arxiv-2409.04540","DOIUrl":null,"url":null,"abstract":"In addressing the persistent challenges of data-sparsity and cold-start\nissues in domain-expert recommender systems, Cross-Domain Recommendation (CDR)\nemerges as a promising methodology. CDR aims at enhancing prediction\nperformance in the target domain by leveraging interaction knowledge from\nrelated source domains, particularly through users or items that span across\nmultiple domains (e.g., Short-Video and Living-Room). For academic research\npurposes, there are a number of distinct aspects to guide CDR method designing,\nincluding the auxiliary domain number, domain-overlapped element, user-item\ninteraction types, and downstream tasks. With so many different CDR combination\nscenario settings, the proposed scenario-expert approaches are tailored to\naddress a specific vertical CDR scenario, and often lack the capacity to adapt\nto multiple horizontal scenarios. In an effect to coherently adapt to various\nscenarios, and drawing inspiration from the concept of domain-invariant\ntransfer learning, we extend the former SOTA model UniCDR in five different\naspects, named as UniCDR+. Our work was successfully deployed on the Kuaishou\nLiving-Room RecSys.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Unified Framework for Cross-Domain Recommendation\",\"authors\":\"Jiangxia Cao, Shen Wang, Gaode Chen, Rui Huang, Shuang Yang, Zhaojie Liu, Guorui Zhou\",\"doi\":\"arxiv-2409.04540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In addressing the persistent challenges of data-sparsity and cold-start\\nissues in domain-expert recommender systems, Cross-Domain Recommendation (CDR)\\nemerges as a promising methodology. CDR aims at enhancing prediction\\nperformance in the target domain by leveraging interaction knowledge from\\nrelated source domains, particularly through users or items that span across\\nmultiple domains (e.g., Short-Video and Living-Room). For academic research\\npurposes, there are a number of distinct aspects to guide CDR method designing,\\nincluding the auxiliary domain number, domain-overlapped element, user-item\\ninteraction types, and downstream tasks. With so many different CDR combination\\nscenario settings, the proposed scenario-expert approaches are tailored to\\naddress a specific vertical CDR scenario, and often lack the capacity to adapt\\nto multiple horizontal scenarios. In an effect to coherently adapt to various\\nscenarios, and drawing inspiration from the concept of domain-invariant\\ntransfer learning, we extend the former SOTA model UniCDR in five different\\naspects, named as UniCDR+. Our work was successfully deployed on the Kuaishou\\nLiving-Room RecSys.\",\"PeriodicalId\":501281,\"journal\":{\"name\":\"arXiv - CS - Information Retrieval\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在解决领域专家推荐系统长期面临的数据稀缺和冷启动问题时,跨领域推荐(CDR)成为一种很有前途的方法。跨域推荐旨在利用相关源域的交互知识,特别是通过跨越多个域的用户或项目(如短视频和客厅)来提高目标域的预测性能。就学术研究目的而言,CDR 方法的设计有许多不同的指导方面,包括辅助域编号、域重叠元素、用户-项目交互类型和下游任务。面对如此多不同的 CDR 组合场景设置,所提出的场景专家方法都是为解决特定的纵向 CDR 场景而量身定制的,往往缺乏适应多种横向场景的能力。为了连贯地适应各种场景,我们从领域不变迁移学习的概念中汲取灵感,从五个不同方面扩展了前 SOTA 模型 UniCDR,并将其命名为 UniCDR+。我们的工作已成功部署在瓜州客厅 RecSys 上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Unified Framework for Cross-Domain Recommendation
In addressing the persistent challenges of data-sparsity and cold-start issues in domain-expert recommender systems, Cross-Domain Recommendation (CDR) emerges as a promising methodology. CDR aims at enhancing prediction performance in the target domain by leveraging interaction knowledge from related source domains, particularly through users or items that span across multiple domains (e.g., Short-Video and Living-Room). For academic research purposes, there are a number of distinct aspects to guide CDR method designing, including the auxiliary domain number, domain-overlapped element, user-item interaction types, and downstream tasks. With so many different CDR combination scenario settings, the proposed scenario-expert approaches are tailored to address a specific vertical CDR scenario, and often lack the capacity to adapt to multiple horizontal scenarios. In an effect to coherently adapt to various scenarios, and drawing inspiration from the concept of domain-invariant transfer learning, we extend the former SOTA model UniCDR in five different aspects, named as UniCDR+. Our work was successfully deployed on the Kuaishou Living-Room RecSys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信