用于生成式推荐的端到端可学习项目标记化

Enze Liu, Bowen Zheng, Cheng Ling, Lantao Hu, Han Li, Wayne Xin Zhao
{"title":"用于生成式推荐的端到端可学习项目标记化","authors":"Enze Liu, Bowen Zheng, Cheng Ling, Lantao Hu, Han Li, Wayne Xin Zhao","doi":"arxiv-2409.05546","DOIUrl":null,"url":null,"abstract":"Recently, generative recommendation has emerged as a promising new paradigm\nthat directly generates item identifiers for recommendation. However, a key\nchallenge lies in how to effectively construct item identifiers that are\nsuitable for recommender systems. Existing methods typically decouple item\ntokenization from subsequent generative recommendation training, likely\nresulting in suboptimal performance. To address this limitation, we propose\nETEGRec, a novel End-To-End Generative Recommender by seamlessly integrating\nitem tokenization and generative recommendation. Our framework is developed\nbased on the dual encoder-decoder architecture, which consists of an item\ntokenizer and a generative recommender. In order to achieve mutual enhancement\nbetween the two components, we propose a recommendation-oriented alignment\napproach by devising two specific optimization objectives: sequence-item\nalignment and preference-semantic alignment. These two alignment objectives can\neffectively couple the learning of item tokenizer and generative recommender,\nthereby fostering the mutual enhancement between the two components. Finally,\nwe further devise an alternating optimization method, to facilitate stable and\neffective end-to-end learning of the entire framework. Extensive experiments\ndemonstrate the effectiveness of our proposed framework compared to a series of\ntraditional sequential recommendation models and generative recommendation\nbaselines.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"End-to-End Learnable Item Tokenization for Generative Recommendation\",\"authors\":\"Enze Liu, Bowen Zheng, Cheng Ling, Lantao Hu, Han Li, Wayne Xin Zhao\",\"doi\":\"arxiv-2409.05546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, generative recommendation has emerged as a promising new paradigm\\nthat directly generates item identifiers for recommendation. However, a key\\nchallenge lies in how to effectively construct item identifiers that are\\nsuitable for recommender systems. Existing methods typically decouple item\\ntokenization from subsequent generative recommendation training, likely\\nresulting in suboptimal performance. To address this limitation, we propose\\nETEGRec, a novel End-To-End Generative Recommender by seamlessly integrating\\nitem tokenization and generative recommendation. Our framework is developed\\nbased on the dual encoder-decoder architecture, which consists of an item\\ntokenizer and a generative recommender. In order to achieve mutual enhancement\\nbetween the two components, we propose a recommendation-oriented alignment\\napproach by devising two specific optimization objectives: sequence-item\\nalignment and preference-semantic alignment. These two alignment objectives can\\neffectively couple the learning of item tokenizer and generative recommender,\\nthereby fostering the mutual enhancement between the two components. Finally,\\nwe further devise an alternating optimization method, to facilitate stable and\\neffective end-to-end learning of the entire framework. Extensive experiments\\ndemonstrate the effectiveness of our proposed framework compared to a series of\\ntraditional sequential recommendation models and generative recommendation\\nbaselines.\",\"PeriodicalId\":501281,\"journal\":{\"name\":\"arXiv - CS - Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,生成式推荐作为一种有前途的新模式出现了,它可以直接生成用于推荐的项目标识符。然而,一个关键的挑战在于如何有效地构建适合推荐系统的项目标识符。现有的方法通常会将项目标识符的生成与后续的生成式推荐训练分离开来,这很可能会导致性能不达标。为了解决这一局限性,我们提出了一种新颖的端到端生成式推荐器--ETEGRec,它将项目标记化和生成式推荐无缝集成在一起。我们的框架是基于双编码器-解码器架构开发的,该架构由项目标记器和生成式推荐器组成。为了实现两个组件之间的相互增强,我们提出了一种面向推荐的对齐方法,设计了两个特定的优化目标:序列-项目对齐和偏好-语义对齐。这两个对齐目标可以有效地将条目标记器和生成式推荐器的学习结合起来,从而促进两个组件之间的相互增强。最后,我们进一步设计了一种交替优化方法,以促进整个框架稳定而有效的端到端学习。广泛的实验证明,与一系列传统的顺序推荐模型和生成式推荐基线相比,我们提出的框架非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
End-to-End Learnable Item Tokenization for Generative Recommendation
Recently, generative recommendation has emerged as a promising new paradigm that directly generates item identifiers for recommendation. However, a key challenge lies in how to effectively construct item identifiers that are suitable for recommender systems. Existing methods typically decouple item tokenization from subsequent generative recommendation training, likely resulting in suboptimal performance. To address this limitation, we propose ETEGRec, a novel End-To-End Generative Recommender by seamlessly integrating item tokenization and generative recommendation. Our framework is developed based on the dual encoder-decoder architecture, which consists of an item tokenizer and a generative recommender. In order to achieve mutual enhancement between the two components, we propose a recommendation-oriented alignment approach by devising two specific optimization objectives: sequence-item alignment and preference-semantic alignment. These two alignment objectives can effectively couple the learning of item tokenizer and generative recommender, thereby fostering the mutual enhancement between the two components. Finally, we further devise an alternating optimization method, to facilitate stable and effective end-to-end learning of the entire framework. Extensive experiments demonstrate the effectiveness of our proposed framework compared to a series of traditional sequential recommendation models and generative recommendation baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信