通过多视角反思和迭代改进顺序建议

Weicong Qin, Yi Xu, Weijie Yu, Chenglei Shen, Xiao Zhang, Ming He, Jianping Fan, Jun Xu
{"title":"通过多视角反思和迭代改进顺序建议","authors":"Weicong Qin, Yi Xu, Weijie Yu, Chenglei Shen, Xiao Zhang, Ming He, Jianping Fan, Jun Xu","doi":"arxiv-2409.06377","DOIUrl":null,"url":null,"abstract":"Sequence recommendation (SeqRec) aims to predict the next item a user will\ninteract with by understanding user intentions and leveraging collaborative\nfiltering information. Large language models (LLMs) have shown great promise in\nrecommendation tasks through prompt-based, fixed reflection libraries, and\nfine-tuning techniques. However, these methods face challenges, including lack\nof supervision, inability to optimize reflection sources, inflexibility to\ndiverse user needs, and high computational costs. Despite promising results,\ncurrent studies primarily focus on reflections of users' explicit preferences\n(e.g., item titles) while neglecting implicit preferences (e.g., brands) and\ncollaborative filtering information. This oversight hinders the capture of\npreference shifts and dynamic user behaviors. Additionally, existing approaches\nlack mechanisms for reflection evaluation and iteration, often leading to\nsuboptimal recommendations. To address these issues, we propose the Mixture of\nREflectors (MoRE) framework, designed to model and learn dynamic user\npreferences in SeqRec. Specifically, MoRE introduces three reflectors for\ngenerating LLM-based reflections on explicit preferences, implicit preferences,\nand collaborative signals. Each reflector incorporates a self-improving\nstrategy, termed refining-and-iteration, to evaluate and iteratively update\nreflections. Furthermore, a meta-reflector employs a contextual bandit\nalgorithm to select the most suitable expert and corresponding reflections for\neach user's recommendation, effectively capturing dynamic preferences.\nExtensive experiments on three real-world datasets demonstrate that MoRE\nconsistently outperforms state-of-the-art methods, requiring less training time\nand GPU memory compared to other LLM-based approaches in SeqRec.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Sequential Recommendations through Multi-Perspective Reflections and Iteration\",\"authors\":\"Weicong Qin, Yi Xu, Weijie Yu, Chenglei Shen, Xiao Zhang, Ming He, Jianping Fan, Jun Xu\",\"doi\":\"arxiv-2409.06377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sequence recommendation (SeqRec) aims to predict the next item a user will\\ninteract with by understanding user intentions and leveraging collaborative\\nfiltering information. Large language models (LLMs) have shown great promise in\\nrecommendation tasks through prompt-based, fixed reflection libraries, and\\nfine-tuning techniques. However, these methods face challenges, including lack\\nof supervision, inability to optimize reflection sources, inflexibility to\\ndiverse user needs, and high computational costs. Despite promising results,\\ncurrent studies primarily focus on reflections of users' explicit preferences\\n(e.g., item titles) while neglecting implicit preferences (e.g., brands) and\\ncollaborative filtering information. This oversight hinders the capture of\\npreference shifts and dynamic user behaviors. Additionally, existing approaches\\nlack mechanisms for reflection evaluation and iteration, often leading to\\nsuboptimal recommendations. To address these issues, we propose the Mixture of\\nREflectors (MoRE) framework, designed to model and learn dynamic user\\npreferences in SeqRec. Specifically, MoRE introduces three reflectors for\\ngenerating LLM-based reflections on explicit preferences, implicit preferences,\\nand collaborative signals. Each reflector incorporates a self-improving\\nstrategy, termed refining-and-iteration, to evaluate and iteratively update\\nreflections. Furthermore, a meta-reflector employs a contextual bandit\\nalgorithm to select the most suitable expert and corresponding reflections for\\neach user's recommendation, effectively capturing dynamic preferences.\\nExtensive experiments on three real-world datasets demonstrate that MoRE\\nconsistently outperforms state-of-the-art methods, requiring less training time\\nand GPU memory compared to other LLM-based approaches in SeqRec.\",\"PeriodicalId\":501281,\"journal\":{\"name\":\"arXiv - CS - Information Retrieval\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

序列推荐(SeqRec)旨在通过理解用户意图和利用协同过滤信息来预测用户将与之互动的下一个项目。大语言模型(LLM)通过基于提示的固定反射库和微调技术,在推荐任务中显示出了巨大的前景。然而,这些方法也面临着挑战,包括缺乏监督、无法优化反射源、无法灵活应对不同的用户需求以及计算成本高昂等。尽管取得了可喜的成果,但目前的研究主要集中在对用户显性偏好(如商品标题)的反映上,而忽略了隐性偏好(如品牌)和协作筛选信息。这种疏忽阻碍了对偏好转变和动态用户行为的捕捉。此外,现有方法缺乏反思评估和迭代机制,往往会导致次优推荐。为了解决这些问题,我们提出了 Mixture ofREflectors(MoRE)框架,旨在对 SeqRec 中的动态用户偏好进行建模和学习。具体来说,MoRE 引入了三个反射器,用于生成基于 LLM 的显式偏好、隐式偏好和协作信号的反射。每个反射器都包含一个自我完善策略(称为 "完善和迭代"),用于评估和迭代更新反射。在三个真实数据集上进行的广泛实验表明,MoRE 的性能始终优于最先进的方法,与 SeqRec 中其他基于 LLM 的方法相比,它所需的训练时间和 GPU 内存更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Sequential Recommendations through Multi-Perspective Reflections and Iteration
Sequence recommendation (SeqRec) aims to predict the next item a user will interact with by understanding user intentions and leveraging collaborative filtering information. Large language models (LLMs) have shown great promise in recommendation tasks through prompt-based, fixed reflection libraries, and fine-tuning techniques. However, these methods face challenges, including lack of supervision, inability to optimize reflection sources, inflexibility to diverse user needs, and high computational costs. Despite promising results, current studies primarily focus on reflections of users' explicit preferences (e.g., item titles) while neglecting implicit preferences (e.g., brands) and collaborative filtering information. This oversight hinders the capture of preference shifts and dynamic user behaviors. Additionally, existing approaches lack mechanisms for reflection evaluation and iteration, often leading to suboptimal recommendations. To address these issues, we propose the Mixture of REflectors (MoRE) framework, designed to model and learn dynamic user preferences in SeqRec. Specifically, MoRE introduces three reflectors for generating LLM-based reflections on explicit preferences, implicit preferences, and collaborative signals. Each reflector incorporates a self-improving strategy, termed refining-and-iteration, to evaluate and iteratively update reflections. Furthermore, a meta-reflector employs a contextual bandit algorithm to select the most suitable expert and corresponding reflections for each user's recommendation, effectively capturing dynamic preferences. Extensive experiments on three real-world datasets demonstrate that MoRE consistently outperforms state-of-the-art methods, requiring less training time and GPU memory compared to other LLM-based approaches in SeqRec.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信