跳过无限字的自动机

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Shaull Almagor, Omer Yizhaq
{"title":"跳过无限字的自动机","authors":"Shaull Almagor, Omer Yizhaq","doi":"10.1007/s00224-024-10192-w","DOIUrl":null,"url":null,"abstract":"<p>Jumping automata are finite automata that read their input in a non-consecutive manner, disregarding the order of the letters in the word. We introduce and study jumping automata over infinite words. Unlike the setting of finite words, which has been well studied, for infinite words it is not clear how words can be reordered. To this end, we consider three semantics: automata that read the infinite word in some order so that no letter is overlooked, automata that can permute the word in windows of a given size k, and automata that can permute the word in windows of an existentially-quantified bound. We study expressiveness, closure properties and algorithmic properties of these models.</p>","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":"173 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jumping Automata over Infinite Words\",\"authors\":\"Shaull Almagor, Omer Yizhaq\",\"doi\":\"10.1007/s00224-024-10192-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Jumping automata are finite automata that read their input in a non-consecutive manner, disregarding the order of the letters in the word. We introduce and study jumping automata over infinite words. Unlike the setting of finite words, which has been well studied, for infinite words it is not clear how words can be reordered. To this end, we consider three semantics: automata that read the infinite word in some order so that no letter is overlooked, automata that can permute the word in windows of a given size k, and automata that can permute the word in windows of an existentially-quantified bound. We study expressiveness, closure properties and algorithmic properties of these models.</p>\",\"PeriodicalId\":22832,\"journal\":{\"name\":\"Theory of Computing Systems\",\"volume\":\"173 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Computing Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00224-024-10192-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00224-024-10192-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

跳跃自动机是一种有限自动机,它可以不考虑单词中字母的顺序,以非连续的方式读取输入内容。我们介绍并研究无限词上的跳跃自动机。与有限单词的研究不同,对于无限单词,单词如何重新排序尚不清楚。为此,我们考虑了三种语义:按一定顺序读取无限词以便不忽略任何字母的自动机、能在给定大小为 k 的窗口中排列词的自动机,以及能在存在量化约束的窗口中排列词的自动机。我们将研究这些模型的表现力、闭合特性和算法特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Jumping Automata over Infinite Words

Jumping Automata over Infinite Words

Jumping automata are finite automata that read their input in a non-consecutive manner, disregarding the order of the letters in the word. We introduce and study jumping automata over infinite words. Unlike the setting of finite words, which has been well studied, for infinite words it is not clear how words can be reordered. To this end, we consider three semantics: automata that read the infinite word in some order so that no letter is overlooked, automata that can permute the word in windows of a given size k, and automata that can permute the word in windows of an existentially-quantified bound. We study expressiveness, closure properties and algorithmic properties of these models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theory of Computing Systems
Theory of Computing Systems 工程技术-计算机:理论方法
CiteScore
1.90
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: TOCS is devoted to publishing original research from all areas of theoretical computer science, ranging from foundational areas such as computational complexity, to fundamental areas such as algorithms and data structures, to focused areas such as parallel and distributed algorithms and architectures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信