使用大型语言模型进行归属式信息检索的评估框架

Hanane Djeddal, Pierre Erbacher, Raouf Toukal, Laure Soulier, Karen Pinel-Sauvagnat, Sophia Katrenko, Lynda Tamine
{"title":"使用大型语言模型进行归属式信息检索的评估框架","authors":"Hanane Djeddal, Pierre Erbacher, Raouf Toukal, Laure Soulier, Karen Pinel-Sauvagnat, Sophia Katrenko, Lynda Tamine","doi":"arxiv-2409.08014","DOIUrl":null,"url":null,"abstract":"With the growing success of Large Language models (LLMs) in\ninformation-seeking scenarios, search engines are now adopting generative\napproaches to provide answers along with in-line citations as attribution.\nWhile existing work focuses mainly on attributed question answering, in this\npaper, we target information-seeking scenarios which are often more challenging\ndue to the open-ended nature of the queries and the size of the label space in\nterms of the diversity of candidate-attributed answers per query. We propose a\nreproducible framework to evaluate and benchmark attributed information\nseeking, using any backbone LLM, and different architectural designs: (1)\nGenerate (2) Retrieve then Generate, and (3) Generate then Retrieve.\nExperiments using HAGRID, an attributed information-seeking dataset, show the\nimpact of different scenarios on both the correctness and attributability of\nanswers.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Evaluation Framework for Attributed Information Retrieval using Large Language Models\",\"authors\":\"Hanane Djeddal, Pierre Erbacher, Raouf Toukal, Laure Soulier, Karen Pinel-Sauvagnat, Sophia Katrenko, Lynda Tamine\",\"doi\":\"arxiv-2409.08014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing success of Large Language models (LLMs) in\\ninformation-seeking scenarios, search engines are now adopting generative\\napproaches to provide answers along with in-line citations as attribution.\\nWhile existing work focuses mainly on attributed question answering, in this\\npaper, we target information-seeking scenarios which are often more challenging\\ndue to the open-ended nature of the queries and the size of the label space in\\nterms of the diversity of candidate-attributed answers per query. We propose a\\nreproducible framework to evaluate and benchmark attributed information\\nseeking, using any backbone LLM, and different architectural designs: (1)\\nGenerate (2) Retrieve then Generate, and (3) Generate then Retrieve.\\nExperiments using HAGRID, an attributed information-seeking dataset, show the\\nimpact of different scenarios on both the correctness and attributability of\\nanswers.\",\"PeriodicalId\":501281,\"journal\":{\"name\":\"arXiv - CS - Information Retrieval\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着大语言模型(LLM)在信息搜索场景中取得越来越大的成功,搜索引擎现在开始采用生成式方法来提供答案以及作为归因的内联引文。现有的工作主要集中在归因式问题解答,而在本文中,我们的目标是信息搜索场景,由于查询的开放性和标签空间的大小(即每个查询的候选归因答案的多样性),这种场景往往更具挑战性。我们提出了一个可实现的框架,利用任何骨干 LLM 和不同的架构设计:(1)先生成(2)先检索再生成,以及(3)先生成再检索,对归属式信息搜索进行评估和基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Evaluation Framework for Attributed Information Retrieval using Large Language Models
With the growing success of Large Language models (LLMs) in information-seeking scenarios, search engines are now adopting generative approaches to provide answers along with in-line citations as attribution. While existing work focuses mainly on attributed question answering, in this paper, we target information-seeking scenarios which are often more challenging due to the open-ended nature of the queries and the size of the label space in terms of the diversity of candidate-attributed answers per query. We propose a reproducible framework to evaluate and benchmark attributed information seeking, using any backbone LLM, and different architectural designs: (1) Generate (2) Retrieve then Generate, and (3) Generate then Retrieve. Experiments using HAGRID, an attributed information-seeking dataset, show the impact of different scenarios on both the correctness and attributability of answers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信