用于过氧化单硫酸盐活化的笼中笼超晶格 FeSeS@C:表面酸度调节铁的自旋态

Qiang Zhong, Yan Xue, Zihao Qi, Yue Sun, Leliang Wu, Dunyu Sun, Chenmin Xu, Kwangchol Ri, Shaogui Yang, Jiandong Zhu, Qiuyi Ji, Yazi Liu, Shiyin Li, Huan He
{"title":"用于过氧化单硫酸盐活化的笼中笼超晶格 FeSeS@C:表面酸度调节铁的自旋态","authors":"Qiang Zhong, Yan Xue, Zihao Qi, Yue Sun, Leliang Wu, Dunyu Sun, Chenmin Xu, Kwangchol Ri, Shaogui Yang, Jiandong Zhu, Qiuyi Ji, Yazi Liu, Shiyin Li, Huan He","doi":"10.1016/j.apcatb.2024.124539","DOIUrl":null,"url":null,"abstract":"Two-dimensional cage-in-cage carbon-coated FeSeS superlattices with varying degrees of sulfidation (FeSeS@C) are developed for activating peroxymonosulfate (PMS) to effectively degrade diatrizoic acid (DTZ), and the intrinsic origin that govern the activity of FeSeS@C are deeply elucidated. Experimental and theoretical analyses manifested that proper sulfidation led to increased surface acidity of FeSeS@C. The high surface acidity can optimize the exposure and spin state of Fe sites for FeSeS@C-4, a high spin state of Fe (6.27 μ) not only regulating PMS adsorption for enhancing the charge density, but also expediting interfacial charge deliver to trigger the efficient PMS activation. Therefore, among FeSeS@C, FeSeS@C-4 exhibited the best degradation performance for DTZ, with first-order kinetic rate constants (k) of 0.232 min and degradation rate of 100 %. This study demonstrates a novel application of cage-in-cage superlattices in environmental remediation and offers new insights into the mechanism of PMS activation by sulfur modification Fe-based catalysts.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FeSeS@C cage-in-cage superlattices for peroxymonosulfate activation: Surface acidity regulates Fe spin state\",\"authors\":\"Qiang Zhong, Yan Xue, Zihao Qi, Yue Sun, Leliang Wu, Dunyu Sun, Chenmin Xu, Kwangchol Ri, Shaogui Yang, Jiandong Zhu, Qiuyi Ji, Yazi Liu, Shiyin Li, Huan He\",\"doi\":\"10.1016/j.apcatb.2024.124539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional cage-in-cage carbon-coated FeSeS superlattices with varying degrees of sulfidation (FeSeS@C) are developed for activating peroxymonosulfate (PMS) to effectively degrade diatrizoic acid (DTZ), and the intrinsic origin that govern the activity of FeSeS@C are deeply elucidated. Experimental and theoretical analyses manifested that proper sulfidation led to increased surface acidity of FeSeS@C. The high surface acidity can optimize the exposure and spin state of Fe sites for FeSeS@C-4, a high spin state of Fe (6.27 μ) not only regulating PMS adsorption for enhancing the charge density, but also expediting interfacial charge deliver to trigger the efficient PMS activation. Therefore, among FeSeS@C, FeSeS@C-4 exhibited the best degradation performance for DTZ, with first-order kinetic rate constants (k) of 0.232 min and degradation rate of 100 %. This study demonstrates a novel application of cage-in-cage superlattices in environmental remediation and offers new insights into the mechanism of PMS activation by sulfur modification Fe-based catalysts.\",\"PeriodicalId\":516528,\"journal\":{\"name\":\"Applied Catalysis B: Environment and Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environment and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apcatb.2024.124539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实验和理论分析表明,适当的硫化可提高 FeSeS@C 的表面酸度。高表面酸度可以优化 FeSeS@C-4 的铁位点暴露和自旋态,高自旋态的铁位点(6.27 μ)不仅可以调节 PMS 的吸附以提高电荷密度,还可以加速界面电荷的传递,从而引发 PMS 的高效活化。因此,在 FeSeS@C 中,FeSeS@C-4 对 DTZ 的降解性能最好,一阶动力学速率常数(k)为 0.232 分钟,降解率为 100%。这项研究展示了笼中笼超晶格在环境修复中的新应用,并为硫改性铁基催化剂活化 PMS 的机理提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FeSeS@C cage-in-cage superlattices for peroxymonosulfate activation: Surface acidity regulates Fe spin state
Two-dimensional cage-in-cage carbon-coated FeSeS superlattices with varying degrees of sulfidation (FeSeS@C) are developed for activating peroxymonosulfate (PMS) to effectively degrade diatrizoic acid (DTZ), and the intrinsic origin that govern the activity of FeSeS@C are deeply elucidated. Experimental and theoretical analyses manifested that proper sulfidation led to increased surface acidity of FeSeS@C. The high surface acidity can optimize the exposure and spin state of Fe sites for FeSeS@C-4, a high spin state of Fe (6.27 μ) not only regulating PMS adsorption for enhancing the charge density, but also expediting interfacial charge deliver to trigger the efficient PMS activation. Therefore, among FeSeS@C, FeSeS@C-4 exhibited the best degradation performance for DTZ, with first-order kinetic rate constants (k) of 0.232 min and degradation rate of 100 %. This study demonstrates a novel application of cage-in-cage superlattices in environmental remediation and offers new insights into the mechanism of PMS activation by sulfur modification Fe-based catalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信