整合深度学习和元搜索算法,在检测恶意物联网节点中实现基于区块链的放心数据管理

IF 3.3 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Faeiz M. Alserhani
{"title":"整合深度学习和元搜索算法,在检测恶意物联网节点中实现基于区块链的放心数据管理","authors":"Faeiz M. Alserhani","doi":"10.1007/s12083-024-01786-9","DOIUrl":null,"url":null,"abstract":"<p>The Internet of Things (IoT) refers to a network where different smart devices are interconnected through the Internet. This network enables these devices to communicate, share data, and exert control over the surrounding physical environment to work as a data-driven mobile computing system. Nevertheless, due to wireless networks' openness, connectivity, resource constraints, and smart devices' resource limitations, the IoT is vulnerable to several different routing attacks. Addressing these security concerns becomes crucial if data exchanged over IoT networks is to remain precise and trustworthy. This study presents a trust management evaluation for IoT devices with routing using the cryptographic algorithms Rivest, Shamir, Adleman (RSA), Self-Adaptive Tasmanian Devil Optimization (SA_TDO) for optimal key generation, and Secure Hash Algorithm 3-512 (SHA3-512), as well as an Intrusion Detection System (IDS) for spotting threats in IoT routing. By verifying the validity and integrity of the data exchanged between nodes and identifying and thwarting network threats, the proposed approach seeks to enhance IoT network security. The stored data is encrypted using the RSA technique, keys are optimally generated using the Tasmanian Devil Optimization (TDO) process, and data integrity is guaranteed using the SHA3-512 algorithm. Deep Learning Intrusion detection is achieved with Convolutional Spiking neural network-optimized deep neural network. The Deep Neural Network (DNN) is optimized with the Archimedes Optimization Algorithm (AOA). The developed model is simulated in Python, and the results obtained are evaluated and compared with other existing models. The findings indicate that the design is efficient in providing secure and reliable routing in IoT-enabled, futuristic, smart vertical networks while identifying and blocking threats. The proposed technique also showcases shorter response times (209.397 s at 70% learn rate, 223.103 s at 80% learn rate) and shorter sharing record times (13.0873 s at 70% learn rate, 13.9439 s at 80% learn rate), which underlines its strength. The performance metrics for the proposed AOA-ODNN model were evaluated at learning rates of 70% and 80%. The highest metrics were achieved at an 80% learning rate, with an accuracy of 0.989434, precision of 0.988886, sensitivity of 0.988886, specificity of 0.998616, F-measure of 0.988886, Matthews Correlation Coefficient (MCC) of 0.895521, Negative predictive value (NPV) of 0.998616, False Positive Rate (FPR) of 0.034365, and False Negative Rate (FNR) of 0.103095.</p>","PeriodicalId":49313,"journal":{"name":"Peer-To-Peer Networking and Applications","volume":"13 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating deep learning and metaheuristics algorithms for blockchain-based reassurance data management in the detection of malicious IoT nodes\",\"authors\":\"Faeiz M. Alserhani\",\"doi\":\"10.1007/s12083-024-01786-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Internet of Things (IoT) refers to a network where different smart devices are interconnected through the Internet. This network enables these devices to communicate, share data, and exert control over the surrounding physical environment to work as a data-driven mobile computing system. Nevertheless, due to wireless networks' openness, connectivity, resource constraints, and smart devices' resource limitations, the IoT is vulnerable to several different routing attacks. Addressing these security concerns becomes crucial if data exchanged over IoT networks is to remain precise and trustworthy. This study presents a trust management evaluation for IoT devices with routing using the cryptographic algorithms Rivest, Shamir, Adleman (RSA), Self-Adaptive Tasmanian Devil Optimization (SA_TDO) for optimal key generation, and Secure Hash Algorithm 3-512 (SHA3-512), as well as an Intrusion Detection System (IDS) for spotting threats in IoT routing. By verifying the validity and integrity of the data exchanged between nodes and identifying and thwarting network threats, the proposed approach seeks to enhance IoT network security. The stored data is encrypted using the RSA technique, keys are optimally generated using the Tasmanian Devil Optimization (TDO) process, and data integrity is guaranteed using the SHA3-512 algorithm. Deep Learning Intrusion detection is achieved with Convolutional Spiking neural network-optimized deep neural network. The Deep Neural Network (DNN) is optimized with the Archimedes Optimization Algorithm (AOA). The developed model is simulated in Python, and the results obtained are evaluated and compared with other existing models. The findings indicate that the design is efficient in providing secure and reliable routing in IoT-enabled, futuristic, smart vertical networks while identifying and blocking threats. The proposed technique also showcases shorter response times (209.397 s at 70% learn rate, 223.103 s at 80% learn rate) and shorter sharing record times (13.0873 s at 70% learn rate, 13.9439 s at 80% learn rate), which underlines its strength. The performance metrics for the proposed AOA-ODNN model were evaluated at learning rates of 70% and 80%. The highest metrics were achieved at an 80% learning rate, with an accuracy of 0.989434, precision of 0.988886, sensitivity of 0.988886, specificity of 0.998616, F-measure of 0.988886, Matthews Correlation Coefficient (MCC) of 0.895521, Negative predictive value (NPV) of 0.998616, False Positive Rate (FPR) of 0.034365, and False Negative Rate (FNR) of 0.103095.</p>\",\"PeriodicalId\":49313,\"journal\":{\"name\":\"Peer-To-Peer Networking and Applications\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peer-To-Peer Networking and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12083-024-01786-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer-To-Peer Networking and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12083-024-01786-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)是指不同智能设备通过互联网相互连接的网络。该网络使这些设备能够通信、共享数据并控制周围的物理环境,从而成为一个数据驱动的移动计算系统。然而,由于无线网络的开放性、连通性、资源限制以及智能设备的资源局限性,物联网很容易受到几种不同的路由攻击。如果要保持物联网网络交换数据的精确性和可信性,解决这些安全问题就变得至关重要。本研究利用加密算法 Rivest、Shamir、Adleman(RSA)、用于优化密钥生成的自适应塔斯马尼亚魔鬼优化算法(SA_TDO)和安全散列算法 3-512 (SHA3-512),以及用于发现物联网路由威胁的入侵检测系统(IDS),对具有路由功能的物联网设备进行了信任管理评估。通过验证节点间数据交换的有效性和完整性以及识别和挫败网络威胁,所提出的方法旨在增强物联网网络的安全性。存储的数据使用 RSA 技术加密,密钥使用塔斯马尼亚魔鬼优化(TDO)流程优化生成,数据完整性使用 SHA3-512 算法保证。深度学习入侵检测是通过卷积尖峰神经网络优化的深度神经网络实现的。深度神经网络(DNN)采用阿基米德优化算法(AOA)进行优化。用 Python 对所开发的模型进行了仿真,并对所获得的结果进行了评估,并与其他现有模型进行了比较。研究结果表明,该设计能有效地在物联网、未来智能垂直网络中提供安全可靠的路由选择,同时还能识别和阻止威胁。所提出的技术还缩短了响应时间(70% 学习率时为 209.397 秒,80% 学习率时为 223.103 秒),缩短了共享记录时间(70% 学习率时为 13.0873 秒,80% 学习率时为 13.9439 秒),这凸显了它的优势。在学习率为 70% 和 80% 时,对所提出的 AOA-ODNN 模型的性能指标进行了评估。学习率为 80% 时的指标最高,准确度为 0.989434,精确度为 0.988886,灵敏度为 0.988886,特异度为 0.998616,F-measure 为 0.988886,马修斯相关系数 (Matthews Correlation Coefficient, MCC) 为 0.895521,负预测值 (Negative predictive value, NPV) 为 0.998616,假阳性率 (False Positive Rate, FPR) 为 0.034365,假阴性率 (False Negative Rate, FNR) 为 0.103095。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integrating deep learning and metaheuristics algorithms for blockchain-based reassurance data management in the detection of malicious IoT nodes

Integrating deep learning and metaheuristics algorithms for blockchain-based reassurance data management in the detection of malicious IoT nodes

The Internet of Things (IoT) refers to a network where different smart devices are interconnected through the Internet. This network enables these devices to communicate, share data, and exert control over the surrounding physical environment to work as a data-driven mobile computing system. Nevertheless, due to wireless networks' openness, connectivity, resource constraints, and smart devices' resource limitations, the IoT is vulnerable to several different routing attacks. Addressing these security concerns becomes crucial if data exchanged over IoT networks is to remain precise and trustworthy. This study presents a trust management evaluation for IoT devices with routing using the cryptographic algorithms Rivest, Shamir, Adleman (RSA), Self-Adaptive Tasmanian Devil Optimization (SA_TDO) for optimal key generation, and Secure Hash Algorithm 3-512 (SHA3-512), as well as an Intrusion Detection System (IDS) for spotting threats in IoT routing. By verifying the validity and integrity of the data exchanged between nodes and identifying and thwarting network threats, the proposed approach seeks to enhance IoT network security. The stored data is encrypted using the RSA technique, keys are optimally generated using the Tasmanian Devil Optimization (TDO) process, and data integrity is guaranteed using the SHA3-512 algorithm. Deep Learning Intrusion detection is achieved with Convolutional Spiking neural network-optimized deep neural network. The Deep Neural Network (DNN) is optimized with the Archimedes Optimization Algorithm (AOA). The developed model is simulated in Python, and the results obtained are evaluated and compared with other existing models. The findings indicate that the design is efficient in providing secure and reliable routing in IoT-enabled, futuristic, smart vertical networks while identifying and blocking threats. The proposed technique also showcases shorter response times (209.397 s at 70% learn rate, 223.103 s at 80% learn rate) and shorter sharing record times (13.0873 s at 70% learn rate, 13.9439 s at 80% learn rate), which underlines its strength. The performance metrics for the proposed AOA-ODNN model were evaluated at learning rates of 70% and 80%. The highest metrics were achieved at an 80% learning rate, with an accuracy of 0.989434, precision of 0.988886, sensitivity of 0.988886, specificity of 0.998616, F-measure of 0.988886, Matthews Correlation Coefficient (MCC) of 0.895521, Negative predictive value (NPV) of 0.998616, False Positive Rate (FPR) of 0.034365, and False Negative Rate (FNR) of 0.103095.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Peer-To-Peer Networking and Applications
Peer-To-Peer Networking and Applications COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
8.00
自引率
7.10%
发文量
145
审稿时长
12 months
期刊介绍: The aim of the Peer-to-Peer Networking and Applications journal is to disseminate state-of-the-art research and development results in this rapidly growing research area, to facilitate the deployment of P2P networking and applications, and to bring together the academic and industry communities, with the goal of fostering interaction to promote further research interests and activities, thus enabling new P2P applications and services. The journal not only addresses research topics related to networking and communications theory, but also considers the standardization, economic, and engineering aspects of P2P technologies, and their impacts on software engineering, computer engineering, networked communication, and security. The journal serves as a forum for tackling the technical problems arising from both file sharing and media streaming applications. It also includes state-of-the-art technologies in the P2P security domain. Peer-to-Peer Networking and Applications publishes regular papers, tutorials and review papers, case studies, and correspondence from the research, development, and standardization communities. Papers addressing system, application, and service issues are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信