使用基于提示的学习方法进行代码混合和代码切换文本分类

Pasindu Udawatta, Indunil Udayangana, Chathulanka Gamage, Ravi Shekhar, Surangika Ranathunga
{"title":"使用基于提示的学习方法进行代码混合和代码切换文本分类","authors":"Pasindu Udawatta, Indunil Udayangana, Chathulanka Gamage, Ravi Shekhar, Surangika Ranathunga","doi":"10.1007/s11280-024-01302-2","DOIUrl":null,"url":null,"abstract":"<p>Code-mixing and code-switching (CMCS) are prevalent phenomena observed in social media conversations and various other modes of communication. When developing applications such as sentiment analysers and hate-speech detectors that operate on this social media data, CMCS text poses challenges. Recent studies have demonstrated that prompt-based learning of pre-trained language models outperforms full fine-tuning across various tasks. Despite the growing interest in classifying CMCS text, the effectiveness of prompt-based learning for the task remains unexplored. This paper presents an extensive exploration of prompt-based learning for CMCS text classification and the first comprehensive analysis of the impact of the script on classifying CMCS text. Our study reveals that the performance in classifying CMCS text is significantly influenced by the inclusion of multiple scripts and the intensity of code-mixing. In response, we introduce a novel method, <i>Dynamic+AdapterPrompt</i>, which employs distinct models for each script, integrated with adapters. While DynamicPrompt captures the script-specific representation of the text, AdapterPrompt emphasizes capturing the task-oriented functionality. Our experiments on Sinhala-English, Kannada-English, and Hindi-English datasets for sentiment classification, hate-speech detection, and humour detection tasks show that our method outperforms strong fine-tuning baselines and basic prompting strategies.</p>","PeriodicalId":501180,"journal":{"name":"World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of prompt-based learning for code-mixed and code-switched text classification\",\"authors\":\"Pasindu Udawatta, Indunil Udayangana, Chathulanka Gamage, Ravi Shekhar, Surangika Ranathunga\",\"doi\":\"10.1007/s11280-024-01302-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Code-mixing and code-switching (CMCS) are prevalent phenomena observed in social media conversations and various other modes of communication. When developing applications such as sentiment analysers and hate-speech detectors that operate on this social media data, CMCS text poses challenges. Recent studies have demonstrated that prompt-based learning of pre-trained language models outperforms full fine-tuning across various tasks. Despite the growing interest in classifying CMCS text, the effectiveness of prompt-based learning for the task remains unexplored. This paper presents an extensive exploration of prompt-based learning for CMCS text classification and the first comprehensive analysis of the impact of the script on classifying CMCS text. Our study reveals that the performance in classifying CMCS text is significantly influenced by the inclusion of multiple scripts and the intensity of code-mixing. In response, we introduce a novel method, <i>Dynamic+AdapterPrompt</i>, which employs distinct models for each script, integrated with adapters. While DynamicPrompt captures the script-specific representation of the text, AdapterPrompt emphasizes capturing the task-oriented functionality. Our experiments on Sinhala-English, Kannada-English, and Hindi-English datasets for sentiment classification, hate-speech detection, and humour detection tasks show that our method outperforms strong fine-tuning baselines and basic prompting strategies.</p>\",\"PeriodicalId\":501180,\"journal\":{\"name\":\"World Wide Web\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Wide Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11280-024-01302-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11280-024-01302-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

代码混合和代码转换(CMCS)是社交媒体对话和其他各种交流模式中普遍存在的现象。在开发情感分析仪和仇恨语音检测器等应用时,CMCS 文本对这些社交媒体数据的操作提出了挑战。最近的研究表明,在各种任务中,基于提示的预训练语言模型学习优于完全微调。尽管人们对 CMCS 文本分类的兴趣与日俱增,但基于提示的学习在这项任务中的有效性仍有待探索。本文广泛探讨了基于提示的 CMCS 文本分类学习,并首次全面分析了脚本对 CMCS 文本分类的影响。我们的研究发现,CMCS 文本的分类性能受到包含多个脚本和代码混合强度的显著影响。为此,我们引入了一种新方法--动态+适配器提示(Dynamic+AdapterPrompt),该方法针对每个脚本采用不同的模型,并与适配器集成。动态提示捕捉特定脚本的文本表示,而适配器提示则强调捕捉面向任务的功能。我们在僧伽罗语-英语、坎纳达语-英语和印地语-英语数据集上进行的情感分类、仇恨语音检测和幽默检测任务实验表明,我们的方法优于强微调基线和基本提示策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Use of prompt-based learning for code-mixed and code-switched text classification

Use of prompt-based learning for code-mixed and code-switched text classification

Code-mixing and code-switching (CMCS) are prevalent phenomena observed in social media conversations and various other modes of communication. When developing applications such as sentiment analysers and hate-speech detectors that operate on this social media data, CMCS text poses challenges. Recent studies have demonstrated that prompt-based learning of pre-trained language models outperforms full fine-tuning across various tasks. Despite the growing interest in classifying CMCS text, the effectiveness of prompt-based learning for the task remains unexplored. This paper presents an extensive exploration of prompt-based learning for CMCS text classification and the first comprehensive analysis of the impact of the script on classifying CMCS text. Our study reveals that the performance in classifying CMCS text is significantly influenced by the inclusion of multiple scripts and the intensity of code-mixing. In response, we introduce a novel method, Dynamic+AdapterPrompt, which employs distinct models for each script, integrated with adapters. While DynamicPrompt captures the script-specific representation of the text, AdapterPrompt emphasizes capturing the task-oriented functionality. Our experiments on Sinhala-English, Kannada-English, and Hindi-English datasets for sentiment classification, hate-speech detection, and humour detection tasks show that our method outperforms strong fine-tuning baselines and basic prompting strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信