{"title":"磁流变弹性体的新型 \"S \"链结构机理模型","authors":"Yongmin Zhang, Hailong Zhang, Enrong Wang","doi":"10.1177/1045389x241273008","DOIUrl":null,"url":null,"abstract":"Mechanism models based on chain-like structures are often used to characterize the morphology of magneto-rheological elastomer (MRE) and provide theoretical guidance for MRE preparation. However, widely used shear and tension mechanism models based on oblique straight chain or bent-chain structures have the limitation of insufficient accuracy in characterization, mainly because the internal particle chains of anisotropic MRE are not simple oblique straight or bent from scanning electron microscope (SEM) results. Therefore, the particle chain formation and particle interaction mechanism within MRE are revealed firstly. The theoretical results shows that particles tend to form S-like chain structures due to complex attraction and extrusion. On this basis, a novel “S” chain mechanism model is proposed, which is confirmed to have higher accuracy than the ideal shear model and tension model by comparing with the experimental results. The main reason is that the “S” chain mechanism model has realized the unification of shear, compressive, or tension mode, and integrates the fully coupled magnetic field, distribution parameters and interface stretching. The “S” chain mechanism model also takes into account the radius and volume fraction of the particles in MRE preparation, which makes it a more accurate guide to subsequent preparation.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"5 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel “S” chain structure mechanism model of magneto-rheological elastomer\",\"authors\":\"Yongmin Zhang, Hailong Zhang, Enrong Wang\",\"doi\":\"10.1177/1045389x241273008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mechanism models based on chain-like structures are often used to characterize the morphology of magneto-rheological elastomer (MRE) and provide theoretical guidance for MRE preparation. However, widely used shear and tension mechanism models based on oblique straight chain or bent-chain structures have the limitation of insufficient accuracy in characterization, mainly because the internal particle chains of anisotropic MRE are not simple oblique straight or bent from scanning electron microscope (SEM) results. Therefore, the particle chain formation and particle interaction mechanism within MRE are revealed firstly. The theoretical results shows that particles tend to form S-like chain structures due to complex attraction and extrusion. On this basis, a novel “S” chain mechanism model is proposed, which is confirmed to have higher accuracy than the ideal shear model and tension model by comparing with the experimental results. The main reason is that the “S” chain mechanism model has realized the unification of shear, compressive, or tension mode, and integrates the fully coupled magnetic field, distribution parameters and interface stretching. The “S” chain mechanism model also takes into account the radius and volume fraction of the particles in MRE preparation, which makes it a more accurate guide to subsequent preparation.\",\"PeriodicalId\":16121,\"journal\":{\"name\":\"Journal of Intelligent Material Systems and Structures\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Material Systems and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/1045389x241273008\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x241273008","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A novel “S” chain structure mechanism model of magneto-rheological elastomer
Mechanism models based on chain-like structures are often used to characterize the morphology of magneto-rheological elastomer (MRE) and provide theoretical guidance for MRE preparation. However, widely used shear and tension mechanism models based on oblique straight chain or bent-chain structures have the limitation of insufficient accuracy in characterization, mainly because the internal particle chains of anisotropic MRE are not simple oblique straight or bent from scanning electron microscope (SEM) results. Therefore, the particle chain formation and particle interaction mechanism within MRE are revealed firstly. The theoretical results shows that particles tend to form S-like chain structures due to complex attraction and extrusion. On this basis, a novel “S” chain mechanism model is proposed, which is confirmed to have higher accuracy than the ideal shear model and tension model by comparing with the experimental results. The main reason is that the “S” chain mechanism model has realized the unification of shear, compressive, or tension mode, and integrates the fully coupled magnetic field, distribution parameters and interface stretching. The “S” chain mechanism model also takes into account the radius and volume fraction of the particles in MRE preparation, which makes it a more accurate guide to subsequent preparation.
期刊介绍:
The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.