Gadamsetty Revathi, Sagili Navaneeswara Reddy, M. Jayachandra Babu, Bellam Mahesh
{"title":"活化能和热辐射对存在诱导磁场的波浪形气缸上的混合纳米流体(发动机油+镍锌铁氧体+锰锌铁氧体)流动的影响","authors":"Gadamsetty Revathi, Sagili Navaneeswara Reddy, M. Jayachandra Babu, Bellam Mahesh","doi":"10.1177/09544089241274988","DOIUrl":null,"url":null,"abstract":"Wavy cylinders add more complexity to the flow than smooth cylinders. Analyzing this flow helps researchers understand phenomena like boundary layer behavior, drag forces, and heat transfer patterns in real-world scenarios with uneven surfaces. For instance, this knowledge can be applied to understanding flow around underwater structures like pipelines or ship hulls. This study investigates the novel influence of activation energy on radiative hybrid nanofluid flow past a wavy cylinder subjected to an induced magnetic field. We use engine oil containing a mixture of nickel zinc ferrite and manganese zinc ferrite nanoparticles as the base fluid, providing a unique combination of materials not previously explored in this context. We have transformed the problem's equations into a collection of ordinary differential equations and skillfully resolved them using the bvp4c solver. Using bar graphs, the relevant physical characteristics, including the Nusselt number, are discussed. The outcomes for the saddle stagnation-point and nodal stagnation-point scenarios are displayed. Results show that friction factor rises with increasing volume fraction of nickel zinc ferrite and declines with increasing magnetic parameter; these are the main conclusions drawn from the study. The friction factor shrinks at a rate of 0.6803 for nodal stagnation points and 0.73692 for saddle stagnation points when the magnetic parameter is between 0.05 and 0.3. The Sherwood number lowers by 0.0046 (in the case of a nodal stagnation point) and 0.00512 (in the case of a saddle stagnation point) when the activation energy parameter is between 0 and 2. It is also found that as thermal radiation increases, the fluid temperature rises. The findings have implications for designing microfluidic devices, optimizing heat exchanger performance in the presence of magnetic fields, and managing thermal dissipation in miniaturized electronics using wavy surfaces and controlled thermal radiation.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"3 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of activation energy and thermal radiation on hybrid nanofluid (engine oil + nickel zinc ferrite + manganese zinc ferrite) flow over a wavy cylinder in the presence of induced magnetic field\",\"authors\":\"Gadamsetty Revathi, Sagili Navaneeswara Reddy, M. Jayachandra Babu, Bellam Mahesh\",\"doi\":\"10.1177/09544089241274988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wavy cylinders add more complexity to the flow than smooth cylinders. Analyzing this flow helps researchers understand phenomena like boundary layer behavior, drag forces, and heat transfer patterns in real-world scenarios with uneven surfaces. For instance, this knowledge can be applied to understanding flow around underwater structures like pipelines or ship hulls. This study investigates the novel influence of activation energy on radiative hybrid nanofluid flow past a wavy cylinder subjected to an induced magnetic field. We use engine oil containing a mixture of nickel zinc ferrite and manganese zinc ferrite nanoparticles as the base fluid, providing a unique combination of materials not previously explored in this context. We have transformed the problem's equations into a collection of ordinary differential equations and skillfully resolved them using the bvp4c solver. Using bar graphs, the relevant physical characteristics, including the Nusselt number, are discussed. The outcomes for the saddle stagnation-point and nodal stagnation-point scenarios are displayed. Results show that friction factor rises with increasing volume fraction of nickel zinc ferrite and declines with increasing magnetic parameter; these are the main conclusions drawn from the study. The friction factor shrinks at a rate of 0.6803 for nodal stagnation points and 0.73692 for saddle stagnation points when the magnetic parameter is between 0.05 and 0.3. The Sherwood number lowers by 0.0046 (in the case of a nodal stagnation point) and 0.00512 (in the case of a saddle stagnation point) when the activation energy parameter is between 0 and 2. It is also found that as thermal radiation increases, the fluid temperature rises. The findings have implications for designing microfluidic devices, optimizing heat exchanger performance in the presence of magnetic fields, and managing thermal dissipation in miniaturized electronics using wavy surfaces and controlled thermal radiation.\",\"PeriodicalId\":20552,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544089241274988\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544089241274988","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Impact of activation energy and thermal radiation on hybrid nanofluid (engine oil + nickel zinc ferrite + manganese zinc ferrite) flow over a wavy cylinder in the presence of induced magnetic field
Wavy cylinders add more complexity to the flow than smooth cylinders. Analyzing this flow helps researchers understand phenomena like boundary layer behavior, drag forces, and heat transfer patterns in real-world scenarios with uneven surfaces. For instance, this knowledge can be applied to understanding flow around underwater structures like pipelines or ship hulls. This study investigates the novel influence of activation energy on radiative hybrid nanofluid flow past a wavy cylinder subjected to an induced magnetic field. We use engine oil containing a mixture of nickel zinc ferrite and manganese zinc ferrite nanoparticles as the base fluid, providing a unique combination of materials not previously explored in this context. We have transformed the problem's equations into a collection of ordinary differential equations and skillfully resolved them using the bvp4c solver. Using bar graphs, the relevant physical characteristics, including the Nusselt number, are discussed. The outcomes for the saddle stagnation-point and nodal stagnation-point scenarios are displayed. Results show that friction factor rises with increasing volume fraction of nickel zinc ferrite and declines with increasing magnetic parameter; these are the main conclusions drawn from the study. The friction factor shrinks at a rate of 0.6803 for nodal stagnation points and 0.73692 for saddle stagnation points when the magnetic parameter is between 0.05 and 0.3. The Sherwood number lowers by 0.0046 (in the case of a nodal stagnation point) and 0.00512 (in the case of a saddle stagnation point) when the activation energy parameter is between 0 and 2. It is also found that as thermal radiation increases, the fluid temperature rises. The findings have implications for designing microfluidic devices, optimizing heat exchanger performance in the presence of magnetic fields, and managing thermal dissipation in miniaturized electronics using wavy surfaces and controlled thermal radiation.
期刊介绍:
The Journal of Process Mechanical Engineering publishes high-quality, peer-reviewed papers covering a broad area of mechanical engineering activities associated with the design and operation of process equipment.