利用贝叶斯神经网络研究冲刷严重程度自动检测的影响参数

IF 1.7 3区 工程技术 Q3 ENGINEERING, CIVIL
S. T. Vijaya Sarada, Gummadi Venkata Rao
{"title":"利用贝叶斯神经网络研究冲刷严重程度自动检测的影响参数","authors":"S. T. Vijaya Sarada, Gummadi Venkata Rao","doi":"10.1080/10286608.2024.2397637","DOIUrl":null,"url":null,"abstract":"This research proposes a novel approach leveraging deep learning techniques to enhance scour severity prediction that aims to analyse various parameters’ effects on scour severity and scour pattern...","PeriodicalId":50689,"journal":{"name":"Civil Engineering and Environmental Systems","volume":"44 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the influencing parameters with automated scour severity detection using Bayesian neural networks\",\"authors\":\"S. T. Vijaya Sarada, Gummadi Venkata Rao\",\"doi\":\"10.1080/10286608.2024.2397637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research proposes a novel approach leveraging deep learning techniques to enhance scour severity prediction that aims to analyse various parameters’ effects on scour severity and scour pattern...\",\"PeriodicalId\":50689,\"journal\":{\"name\":\"Civil Engineering and Environmental Systems\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering and Environmental Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10286608.2024.2397637\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering and Environmental Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10286608.2024.2397637","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种利用深度学习技术加强冲刷严重程度预测的新方法,旨在分析各种参数对冲刷严重程度和冲刷模式的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the influencing parameters with automated scour severity detection using Bayesian neural networks
This research proposes a novel approach leveraging deep learning techniques to enhance scour severity prediction that aims to analyse various parameters’ effects on scour severity and scour pattern...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Civil Engineering and Environmental Systems
Civil Engineering and Environmental Systems 工程技术-工程:土木
CiteScore
3.30
自引率
16.70%
发文量
10
审稿时长
>12 weeks
期刊介绍: Civil Engineering and Environmental Systems is devoted to the advancement of systems thinking and systems techniques throughout systems engineering, environmental engineering decision-making, and engineering management. We do this by publishing the practical applications and developments of "hard" and "soft" systems techniques and thinking. Submissions that allow for better analysis of civil engineering and environmental systems might look at: -Civil Engineering optimization -Risk assessment in engineering -Civil engineering decision analysis -System identification in engineering -Civil engineering numerical simulation -Uncertainty modelling in engineering -Qualitative modelling of complex engineering systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信