{"title":"通过位点占位工程实现 Mg2Al4Si5O18 中 Ce3+ 和 Mn2+ 的 RGB 三色多模式发光,用于防伪应用","authors":"Rongfu Zhou, Dexiu Hua, Bomei Liu, MingSheng Guo, Quanfeng Li, Jingwei Li, Tingting Deng, Jianbang Zhou","doi":"10.1016/j.mtchem.2024.102287","DOIUrl":null,"url":null,"abstract":"Multimodal luminescent materials have shown important applications in anti-counterfeiting and information encryption, however, mostly difficult to adjust optical properties with the structure, which leads to relatively constant emission position and less selectable excitation wavelength. Herein, Ce and Mn co-doped MgAlSiO phosphors are designed for the applications in RGB-tricolor multimodal anti-counterfeiting. Due to site occupancies, energy transfer and different thermal behaviors of Ce and Mn emissions, the emitting color of MgAlSiO: Ce, Mn is rich and tunable with different excitation wavelengths, doping concentrations and temperatures. The site occupancies of Ce and Mn are clarified with crystal field analysis and in-depth into transitions energies of Ce and Mn. The energy transfer mechanism between Ce and Mn is analyzed via Inokuti-Hirayama model. The difference of thermal stabilities of Ce and Mn emissions is interpreted with construction of vacuum referred binding energy scheme. The as-designed molds of information encryption and decryption with MgAlSiO: Ce, Mn phosphors demonstrate the potential applications in anti-counterfeiting. The work provides an effective way for exploring Ce and Mn doped phosphors with RBG-tricolor multimodal luminescence.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"59 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RGB-tricolor multimodal luminescence of Ce3+ and Mn2+ in Mg2Al4Si5O18 via site occupancy engineering for anticounterfeiting applications\",\"authors\":\"Rongfu Zhou, Dexiu Hua, Bomei Liu, MingSheng Guo, Quanfeng Li, Jingwei Li, Tingting Deng, Jianbang Zhou\",\"doi\":\"10.1016/j.mtchem.2024.102287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimodal luminescent materials have shown important applications in anti-counterfeiting and information encryption, however, mostly difficult to adjust optical properties with the structure, which leads to relatively constant emission position and less selectable excitation wavelength. Herein, Ce and Mn co-doped MgAlSiO phosphors are designed for the applications in RGB-tricolor multimodal anti-counterfeiting. Due to site occupancies, energy transfer and different thermal behaviors of Ce and Mn emissions, the emitting color of MgAlSiO: Ce, Mn is rich and tunable with different excitation wavelengths, doping concentrations and temperatures. The site occupancies of Ce and Mn are clarified with crystal field analysis and in-depth into transitions energies of Ce and Mn. The energy transfer mechanism between Ce and Mn is analyzed via Inokuti-Hirayama model. The difference of thermal stabilities of Ce and Mn emissions is interpreted with construction of vacuum referred binding energy scheme. The as-designed molds of information encryption and decryption with MgAlSiO: Ce, Mn phosphors demonstrate the potential applications in anti-counterfeiting. The work provides an effective way for exploring Ce and Mn doped phosphors with RBG-tricolor multimodal luminescence.\",\"PeriodicalId\":18353,\"journal\":{\"name\":\"Materials Today Chemistry\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtchem.2024.102287\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.102287","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
多模态发光材料在防伪和信息加密领域具有重要的应用前景,但其光学性质大多难以随结构调整,导致发射位置相对固定,激发波长可选择性较差。本文设计了掺杂铈和锰的 MgAlSiO 荧光粉,用于 RGB 三色多模态防伪。由于铈和锰的位点占位、能量传递和不同的热行为,MgAlSiO 荧光粉的发光颜色具有丰富的可调性:MgAlSiO:Ce、Mn 的发光颜色丰富,并可在不同的激发波长、掺杂浓度和温度下进行调谐。通过晶场分析澄清了 Ce 和 Mn 的位点占有率,并深入研究了 Ce 和 Mn 的跃迁能量。通过 Inokuti-Hirayama 模型分析了 Ce 和 Mn 之间的能量传递机制。通过构建真空结合能方案,解释了 Ce 和 Mn 辐射热稳定性的差异。用 MgAlSiO:Ce、Mn 荧光粉设计的信息加密和解密模具展示了在防伪领域的潜在应用。这项研究为探索具有 RBG 三色多模式发光的掺铈和锰荧光粉提供了有效途径。
RGB-tricolor multimodal luminescence of Ce3+ and Mn2+ in Mg2Al4Si5O18 via site occupancy engineering for anticounterfeiting applications
Multimodal luminescent materials have shown important applications in anti-counterfeiting and information encryption, however, mostly difficult to adjust optical properties with the structure, which leads to relatively constant emission position and less selectable excitation wavelength. Herein, Ce and Mn co-doped MgAlSiO phosphors are designed for the applications in RGB-tricolor multimodal anti-counterfeiting. Due to site occupancies, energy transfer and different thermal behaviors of Ce and Mn emissions, the emitting color of MgAlSiO: Ce, Mn is rich and tunable with different excitation wavelengths, doping concentrations and temperatures. The site occupancies of Ce and Mn are clarified with crystal field analysis and in-depth into transitions energies of Ce and Mn. The energy transfer mechanism between Ce and Mn is analyzed via Inokuti-Hirayama model. The difference of thermal stabilities of Ce and Mn emissions is interpreted with construction of vacuum referred binding energy scheme. The as-designed molds of information encryption and decryption with MgAlSiO: Ce, Mn phosphors demonstrate the potential applications in anti-counterfeiting. The work provides an effective way for exploring Ce and Mn doped phosphors with RBG-tricolor multimodal luminescence.
期刊介绍:
Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry.
This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.