Jian Gou, Yousong Hu, Luxin Xing, Jun Xu, Fengzhi Yue, Lina Zhang, Lei Jia
{"title":"基于荧光 CD 和 Eu-MOFs 的多维防伪纳米复合材料,具有连续检测 Cu2+ 和炭疽杆菌的双重功能","authors":"Jian Gou, Yousong Hu, Luxin Xing, Jun Xu, Fengzhi Yue, Lina Zhang, Lei Jia","doi":"10.1016/j.mtchem.2024.102270","DOIUrl":null,"url":null,"abstract":"Traditional luminescent materials for anti-counterfeiting usually adopt encryption of low-level systems with limited security, which seriously hinders their application in preventing counterfeiting and information leakage. Therefore, it is urgent to develop materials for higher-level anti-counterfeiting. In this work, a stimulus-responsive intelligent luminescent material (AC@CDs-Eu-MOFs) was prepared by co-loading green-fluorescence CDs and red-fluorescence Eu-MOFs on Amino clay (AC). 5D security barcodes, which were easy to observe while difficult to clone, were ulteriorly designed based on the nanocomposite owing to the tunable fluorescence by optical stimulation and chemical stimulus. Owing to the large capacity, low cost, and easy authentication, the 5D security barcodes possess enormous potential in optical data storage and multi-dimensional information encryption. In addition, the chemical stimulus-response enables the nanocomposite achievable in detection of Cu and Bacillus anthracis. Particularly, quantitative determination of copper in environmental water samples could be realized with a detection limit as low as 10.67 nM. Therefore, the material shows potential for detection of environmental pollutants besides advanced anti-counterfeiting.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"9 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-dimensional anti-counterfeiting nanocomposite based on fluorescent CDs and Eu-MOFs with dual function for continuous detection of Cu2+ and Bacillus anthracis\",\"authors\":\"Jian Gou, Yousong Hu, Luxin Xing, Jun Xu, Fengzhi Yue, Lina Zhang, Lei Jia\",\"doi\":\"10.1016/j.mtchem.2024.102270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional luminescent materials for anti-counterfeiting usually adopt encryption of low-level systems with limited security, which seriously hinders their application in preventing counterfeiting and information leakage. Therefore, it is urgent to develop materials for higher-level anti-counterfeiting. In this work, a stimulus-responsive intelligent luminescent material (AC@CDs-Eu-MOFs) was prepared by co-loading green-fluorescence CDs and red-fluorescence Eu-MOFs on Amino clay (AC). 5D security barcodes, which were easy to observe while difficult to clone, were ulteriorly designed based on the nanocomposite owing to the tunable fluorescence by optical stimulation and chemical stimulus. Owing to the large capacity, low cost, and easy authentication, the 5D security barcodes possess enormous potential in optical data storage and multi-dimensional information encryption. In addition, the chemical stimulus-response enables the nanocomposite achievable in detection of Cu and Bacillus anthracis. Particularly, quantitative determination of copper in environmental water samples could be realized with a detection limit as low as 10.67 nM. Therefore, the material shows potential for detection of environmental pollutants besides advanced anti-counterfeiting.\",\"PeriodicalId\":18353,\"journal\":{\"name\":\"Materials Today Chemistry\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtchem.2024.102270\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.102270","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
传统的防伪发光材料通常采用低级系统加密,安全性有限,严重阻碍了其在防伪和防信息泄露方面的应用。因此,开发更高级别的防伪材料迫在眉睫。本研究通过在氨基粘土(AC)上共载绿色荧光 CD 和红色荧光 Eu-MOF,制备了一种刺激响应型智能发光材料(AC@CDs-Eu-MOFs)。由于该纳米复合材料在光学刺激和化学刺激下具有可调荧光的特性,因此在此基础上设计出了易于观察而难以克隆的 5D 防伪条形码。由于 5D 安全条形码容量大、成本低、易于验证,因此在光学数据存储和多维信息加密方面具有巨大潜力。此外,化学刺激-响应使纳米复合材料可用于铜和炭疽杆菌的检测。特别是,可以实现对环境水样中铜的定量检测,检测限低至 10.67 nM。因此,该材料除了具有先进的防伪功能外,还具有检测环境污染物的潜力。
A multi-dimensional anti-counterfeiting nanocomposite based on fluorescent CDs and Eu-MOFs with dual function for continuous detection of Cu2+ and Bacillus anthracis
Traditional luminescent materials for anti-counterfeiting usually adopt encryption of low-level systems with limited security, which seriously hinders their application in preventing counterfeiting and information leakage. Therefore, it is urgent to develop materials for higher-level anti-counterfeiting. In this work, a stimulus-responsive intelligent luminescent material (AC@CDs-Eu-MOFs) was prepared by co-loading green-fluorescence CDs and red-fluorescence Eu-MOFs on Amino clay (AC). 5D security barcodes, which were easy to observe while difficult to clone, were ulteriorly designed based on the nanocomposite owing to the tunable fluorescence by optical stimulation and chemical stimulus. Owing to the large capacity, low cost, and easy authentication, the 5D security barcodes possess enormous potential in optical data storage and multi-dimensional information encryption. In addition, the chemical stimulus-response enables the nanocomposite achievable in detection of Cu and Bacillus anthracis. Particularly, quantitative determination of copper in environmental water samples could be realized with a detection limit as low as 10.67 nM. Therefore, the material shows potential for detection of environmental pollutants besides advanced anti-counterfeiting.
期刊介绍:
Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry.
This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.