Meng Du, Jiakang Shi, Pengbiao Geng, Wenfeng Zhou, Xiaoxing Zhang, Songtao Zhang, Huan Pang
{"title":"氮和硫共同掺杂的 MXene@FeCoNiP 作为增强型锂硫电池的高效催化剂","authors":"Meng Du, Jiakang Shi, Pengbiao Geng, Wenfeng Zhou, Xiaoxing Zhang, Songtao Zhang, Huan Pang","doi":"10.1016/j.mtchem.2024.102289","DOIUrl":null,"url":null,"abstract":"Lithium-sulfur (Li–S) batteries have been regarded as be one of the most promising energy storage systems on account of its high theoretical energy and power density. Nevertheless, it is limited by the severe shuttle effect of lithium polysulfides (LiPS) and retarded sulfur reaction kinetics. Herein, a thermal migration route was used to design nitrogen/sulfur co-doped MXene@FeCoNiP (N,S-MXene@FeCoNiP) composites as a promising catalyst for Li–S batteries. The prepared N,S-MXene@FeCoNiP possessing three-dimensional framework can promote rapid electron/ion transfer during battery cycling. The nitrogen/sulfur co-doping could not only improve electronic conductivity, but also provide more catalytic sites. Moreover, the synergy of highly polar MXene and FeCoNiP as well as N/S co-doping can hinder the shuttling of polysulfides and facilitate the LiPS conversion. Benefiting from these advantages, N,S-MXene@FeCoNiP–S cathode showed high specific capacity, remarkable rate capability and good cycling stability. This work is expected to provide inspiration for the reasonable design of catalysts toward advanced Li–S batteries.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"10 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen and sulfur co-doped MXene@FeCoNiP as an efficient catalyst for enhanced lithium-sulfur batteries\",\"authors\":\"Meng Du, Jiakang Shi, Pengbiao Geng, Wenfeng Zhou, Xiaoxing Zhang, Songtao Zhang, Huan Pang\",\"doi\":\"10.1016/j.mtchem.2024.102289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-sulfur (Li–S) batteries have been regarded as be one of the most promising energy storage systems on account of its high theoretical energy and power density. Nevertheless, it is limited by the severe shuttle effect of lithium polysulfides (LiPS) and retarded sulfur reaction kinetics. Herein, a thermal migration route was used to design nitrogen/sulfur co-doped MXene@FeCoNiP (N,S-MXene@FeCoNiP) composites as a promising catalyst for Li–S batteries. The prepared N,S-MXene@FeCoNiP possessing three-dimensional framework can promote rapid electron/ion transfer during battery cycling. The nitrogen/sulfur co-doping could not only improve electronic conductivity, but also provide more catalytic sites. Moreover, the synergy of highly polar MXene and FeCoNiP as well as N/S co-doping can hinder the shuttling of polysulfides and facilitate the LiPS conversion. Benefiting from these advantages, N,S-MXene@FeCoNiP–S cathode showed high specific capacity, remarkable rate capability and good cycling stability. This work is expected to provide inspiration for the reasonable design of catalysts toward advanced Li–S batteries.\",\"PeriodicalId\":18353,\"journal\":{\"name\":\"Materials Today Chemistry\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtchem.2024.102289\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.102289","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Nitrogen and sulfur co-doped MXene@FeCoNiP as an efficient catalyst for enhanced lithium-sulfur batteries
Lithium-sulfur (Li–S) batteries have been regarded as be one of the most promising energy storage systems on account of its high theoretical energy and power density. Nevertheless, it is limited by the severe shuttle effect of lithium polysulfides (LiPS) and retarded sulfur reaction kinetics. Herein, a thermal migration route was used to design nitrogen/sulfur co-doped MXene@FeCoNiP (N,S-MXene@FeCoNiP) composites as a promising catalyst for Li–S batteries. The prepared N,S-MXene@FeCoNiP possessing three-dimensional framework can promote rapid electron/ion transfer during battery cycling. The nitrogen/sulfur co-doping could not only improve electronic conductivity, but also provide more catalytic sites. Moreover, the synergy of highly polar MXene and FeCoNiP as well as N/S co-doping can hinder the shuttling of polysulfides and facilitate the LiPS conversion. Benefiting from these advantages, N,S-MXene@FeCoNiP–S cathode showed high specific capacity, remarkable rate capability and good cycling stability. This work is expected to provide inspiration for the reasonable design of catalysts toward advanced Li–S batteries.
期刊介绍:
Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry.
This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.