颗粒增强金属基复合材料的研磨:现状与前景

IF 4.2 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Xiao-Fei Lei, Wen-Feng Ding, Biao Zhao, Chuan Qian, Zi-Ang Liu, Qi Liu, Dong-Dong Xu, Yan-Jun Zhao, Jian-Hui Zhu
{"title":"颗粒增强金属基复合材料的研磨:现状与前景","authors":"Xiao-Fei Lei, Wen-Feng Ding, Biao Zhao, Chuan Qian, Zi-Ang Liu, Qi Liu, Dong-Dong Xu, Yan-Jun Zhao, Jian-Hui Zhu","doi":"10.1007/s40436-024-00518-9","DOIUrl":null,"url":null,"abstract":"<p>Particle-reinforced metal matrix composites (PMMCs) exhibit exceptional mechanical properties, rendering them highly promising for extensive applications in aerospace, military, automotive, and other critical sectors. The distinct physical properties of the matrix and reinforcement result in a poor machining performance, particularly owing to the continuous increase in the particle content of the reinforcement phase. This has become a major obstacle in achieving the efficient and precise machining of PMMCs. The grinding process, which is a highly precise machining method, has been extensively employed to achieve precision machining of metal matrix composites. Firstly, the classification of PMMCs is presented, and the grinding removal mechanism of this material is elaborated. Recent studies have examined the impact of various factors on the grinding performance, including the grinding force, grinding temperature, grinding force ratio, specific grinding energy, surface integrity, and wheel wear. The application status of various grinding methods for PMMCs is also summarized. Finally, the difficulties and challenges in achieving high-efficiency precision grinding technology for PMMCs are summarized and discussed.</p>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grinding of particle-reinforced metal matrix composite materials: current status and prospects\",\"authors\":\"Xiao-Fei Lei, Wen-Feng Ding, Biao Zhao, Chuan Qian, Zi-Ang Liu, Qi Liu, Dong-Dong Xu, Yan-Jun Zhao, Jian-Hui Zhu\",\"doi\":\"10.1007/s40436-024-00518-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Particle-reinforced metal matrix composites (PMMCs) exhibit exceptional mechanical properties, rendering them highly promising for extensive applications in aerospace, military, automotive, and other critical sectors. The distinct physical properties of the matrix and reinforcement result in a poor machining performance, particularly owing to the continuous increase in the particle content of the reinforcement phase. This has become a major obstacle in achieving the efficient and precise machining of PMMCs. The grinding process, which is a highly precise machining method, has been extensively employed to achieve precision machining of metal matrix composites. Firstly, the classification of PMMCs is presented, and the grinding removal mechanism of this material is elaborated. Recent studies have examined the impact of various factors on the grinding performance, including the grinding force, grinding temperature, grinding force ratio, specific grinding energy, surface integrity, and wheel wear. The application status of various grinding methods for PMMCs is also summarized. Finally, the difficulties and challenges in achieving high-efficiency precision grinding technology for PMMCs are summarized and discussed.</p>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40436-024-00518-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40436-024-00518-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

颗粒增强金属基复合材料(PMMC)具有优异的机械性能,因此在航空航天、军事、汽车和其他关键领域的广泛应用前景十分广阔。基体和增强体的不同物理性质导致其加工性能较差,特别是由于增强相中的颗粒含量不断增加。这已成为实现永磁材料高效、精确加工的主要障碍。磨削工艺作为一种高精度的加工方法,已被广泛用于实现金属基复合材料的精密加工。首先介绍了 PMMC 的分类,并阐述了这种材料的磨削去除机理。最近的研究探讨了各种因素对磨削性能的影响,包括磨削力、磨削温度、磨削力比、比磨削能、表面完整性和砂轮磨损。此外,还总结了永磁材料各种磨削方法的应用现状。最后,总结并讨论了实现永磁集成电路高效精密磨削技术的困难和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Grinding of particle-reinforced metal matrix composite materials: current status and prospects

Grinding of particle-reinforced metal matrix composite materials: current status and prospects

Particle-reinforced metal matrix composites (PMMCs) exhibit exceptional mechanical properties, rendering them highly promising for extensive applications in aerospace, military, automotive, and other critical sectors. The distinct physical properties of the matrix and reinforcement result in a poor machining performance, particularly owing to the continuous increase in the particle content of the reinforcement phase. This has become a major obstacle in achieving the efficient and precise machining of PMMCs. The grinding process, which is a highly precise machining method, has been extensively employed to achieve precision machining of metal matrix composites. Firstly, the classification of PMMCs is presented, and the grinding removal mechanism of this material is elaborated. Recent studies have examined the impact of various factors on the grinding performance, including the grinding force, grinding temperature, grinding force ratio, specific grinding energy, surface integrity, and wheel wear. The application status of various grinding methods for PMMCs is also summarized. Finally, the difficulties and challenges in achieving high-efficiency precision grinding technology for PMMCs are summarized and discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Manufacturing
Advances in Manufacturing Materials Science-Polymers and Plastics
CiteScore
9.10
自引率
3.80%
发文量
274
期刊介绍: As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field. All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信