{"title":"坡角和磁场对喷砂电弧加工镍基超合金表面质量的影响","authors":"Lin Gu, Ke-Lin Li, Xiao-Ka Wang, Guo-Jian He","doi":"10.1007/s40436-024-00523-y","DOIUrl":null,"url":null,"abstract":"<p>Electrical arc machining (EAM) is an efficient process for machining difficult-to-cut materials. However, limited research has been conducted on sloped surface machining within this context, constraining the further application for complex components. This study conducts bevel machining experiments, pointing out that the surface quality becomes unsatisfactory with the increasing bevel angle. The discharge condition is counted and analyzed, while the flow field and the removed particle movement of the discharge gap are simulated, demonstrating the primary factor contributing to the degradation of surface quality, namely the loss of flushing. This weakens both the plasma control effect and debris evacuation, leading to the poor discharge condition. To address this issue, the magnetic field is implemented in blasting erosion arc machining (BEAM). The application of a magnetic field effectively regulates the arc plasma, enhances debris expulsion, and significantly improves the discharge conditions, resulting in a smoother and more uniform sloped surface with a reduced recast layer thickness. This approach provides the possibility of applying BEAM to complex parts made of difficult-to-cut materials in aerospace and military industries.</p>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"4 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of the slope angle and the magnetic field on the surface quality of nickel-based superalloys in blasting erosion arc machining\",\"authors\":\"Lin Gu, Ke-Lin Li, Xiao-Ka Wang, Guo-Jian He\",\"doi\":\"10.1007/s40436-024-00523-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrical arc machining (EAM) is an efficient process for machining difficult-to-cut materials. However, limited research has been conducted on sloped surface machining within this context, constraining the further application for complex components. This study conducts bevel machining experiments, pointing out that the surface quality becomes unsatisfactory with the increasing bevel angle. The discharge condition is counted and analyzed, while the flow field and the removed particle movement of the discharge gap are simulated, demonstrating the primary factor contributing to the degradation of surface quality, namely the loss of flushing. This weakens both the plasma control effect and debris evacuation, leading to the poor discharge condition. To address this issue, the magnetic field is implemented in blasting erosion arc machining (BEAM). The application of a magnetic field effectively regulates the arc plasma, enhances debris expulsion, and significantly improves the discharge conditions, resulting in a smoother and more uniform sloped surface with a reduced recast layer thickness. This approach provides the possibility of applying BEAM to complex parts made of difficult-to-cut materials in aerospace and military industries.</p>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40436-024-00523-y\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40436-024-00523-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
The effect of the slope angle and the magnetic field on the surface quality of nickel-based superalloys in blasting erosion arc machining
Electrical arc machining (EAM) is an efficient process for machining difficult-to-cut materials. However, limited research has been conducted on sloped surface machining within this context, constraining the further application for complex components. This study conducts bevel machining experiments, pointing out that the surface quality becomes unsatisfactory with the increasing bevel angle. The discharge condition is counted and analyzed, while the flow field and the removed particle movement of the discharge gap are simulated, demonstrating the primary factor contributing to the degradation of surface quality, namely the loss of flushing. This weakens both the plasma control effect and debris evacuation, leading to the poor discharge condition. To address this issue, the magnetic field is implemented in blasting erosion arc machining (BEAM). The application of a magnetic field effectively regulates the arc plasma, enhances debris expulsion, and significantly improves the discharge conditions, resulting in a smoother and more uniform sloped surface with a reduced recast layer thickness. This approach provides the possibility of applying BEAM to complex parts made of difficult-to-cut materials in aerospace and military industries.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.