通过原子层沉积缓解多重压实:氮化钛案例研究

IF 2.7 3区 物理与天体物理 Q2 PHYSICS, APPLIED
Y. Kalboussi, S. Dadouch, B. Delatte, F. Miserque, D. Dragoe, F. Eozenou, M. Baudrier, S. Tusseau-Nenez, Y. Zheng, L. Maurice, E. Cenni, Q. Bertrand, P. Sahuquet, E. Fayette, G. Jullien, C. Inguimbert, M. Belhaj, T. Proslier
{"title":"通过原子层沉积缓解多重压实:氮化钛案例研究","authors":"Y. Kalboussi, S. Dadouch, B. Delatte, F. Miserque, D. Dragoe, F. Eozenou, M. Baudrier, S. Tusseau-Nenez, Y. Zheng, L. Maurice, E. Cenni, Q. Bertrand, P. Sahuquet, E. Fayette, G. Jullien, C. Inguimbert, M. Belhaj, T. Proslier","doi":"10.1063/5.0221943","DOIUrl":null,"url":null,"abstract":"This study investigates the use of atomic layer deposition (ALD) to mitigate multipacting phenomena inside superconducting radio frequency cavities used in particle accelerators while preserving high quality factors in the 1010 range. The unique ALD capability to control the film thickness down to the atomic level on arbitrary complex shape objects enables the fine-tuning of TiN film resistivity and total electron emission yield (TEEY) from coupons to devices. This level of control allows us to adequately choose a TiN film thickness that provides both high resistivity to prevent Ohmic losses and a low TEEY to mitigate multipacting for the application of interest. The methodology presented in this work can be scaled to other domains and devices subject to RF fields in vacuum and sensitive to multipacting or electron discharge processes with their own requirements in resistivities and TEEY values.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"2 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multipacting mitigation by atomic layer deposition: The case study of titanium nitride\",\"authors\":\"Y. Kalboussi, S. Dadouch, B. Delatte, F. Miserque, D. Dragoe, F. Eozenou, M. Baudrier, S. Tusseau-Nenez, Y. Zheng, L. Maurice, E. Cenni, Q. Bertrand, P. Sahuquet, E. Fayette, G. Jullien, C. Inguimbert, M. Belhaj, T. Proslier\",\"doi\":\"10.1063/5.0221943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the use of atomic layer deposition (ALD) to mitigate multipacting phenomena inside superconducting radio frequency cavities used in particle accelerators while preserving high quality factors in the 1010 range. The unique ALD capability to control the film thickness down to the atomic level on arbitrary complex shape objects enables the fine-tuning of TiN film resistivity and total electron emission yield (TEEY) from coupons to devices. This level of control allows us to adequately choose a TiN film thickness that provides both high resistivity to prevent Ohmic losses and a low TEEY to mitigate multipacting for the application of interest. The methodology presented in this work can be scaled to other domains and devices subject to RF fields in vacuum and sensitive to multipacting or electron discharge processes with their own requirements in resistivities and TEEY values.\",\"PeriodicalId\":15088,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0221943\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0221943","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

这项研究探讨了如何利用原子层沉积 (ALD) 技术来减轻粒子加速器中使用的超导射频腔内的多压强现象,同时保持 1010 范围内的高质量系数。独特的 ALD 功能可将任意复杂形状物体上的薄膜厚度控制到原子级别,从而实现从试样到设备的 TiN 薄膜电阻率和总电子发射率 (TEEY) 的微调。这种控制水平使我们能够充分选择 TiN 薄膜厚度,既能提供高电阻率以防止欧姆损耗,又能提供低 TEEY 以减轻相关应用中的多孔性。这项工作中介绍的方法可扩展到其他领域和器件,这些领域和器件在真空中会受到射频场的影响,并对电阻率和 TEEY 值有自己的要求,对多压制或电子放电过程敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multipacting mitigation by atomic layer deposition: The case study of titanium nitride
This study investigates the use of atomic layer deposition (ALD) to mitigate multipacting phenomena inside superconducting radio frequency cavities used in particle accelerators while preserving high quality factors in the 1010 range. The unique ALD capability to control the film thickness down to the atomic level on arbitrary complex shape objects enables the fine-tuning of TiN film resistivity and total electron emission yield (TEEY) from coupons to devices. This level of control allows us to adequately choose a TiN film thickness that provides both high resistivity to prevent Ohmic losses and a low TEEY to mitigate multipacting for the application of interest. The methodology presented in this work can be scaled to other domains and devices subject to RF fields in vacuum and sensitive to multipacting or electron discharge processes with their own requirements in resistivities and TEEY values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Physics
Journal of Applied Physics 物理-物理:应用
CiteScore
5.40
自引率
9.40%
发文量
1534
审稿时长
2.3 months
期刊介绍: The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research. Topics covered in JAP are diverse and reflect the most current applied physics research, including: Dielectrics, ferroelectrics, and multiferroics- Electrical discharges, plasmas, and plasma-surface interactions- Emerging, interdisciplinary, and other fields of applied physics- Magnetism, spintronics, and superconductivity- Organic-Inorganic systems, including organic electronics- Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena- Physics of devices and sensors- Physics of materials, including electrical, thermal, mechanical and other properties- Physics of matter under extreme conditions- Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena- Physics of semiconductors- Soft matter, fluids, and biophysics- Thin films, interfaces, and surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信