通过雅可比椭圆函数展开法求解连续近似条件下的 TWPA-SNAIL 传输线电路方程的孤子解

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2024-08-28 DOI:10.1007/s12043-024-02791-6
Bo Liu, Zhou-Bo Duan, Li-Fang Niu
{"title":"通过雅可比椭圆函数展开法求解连续近似条件下的 TWPA-SNAIL 传输线电路方程的孤子解","authors":"Bo Liu,&nbsp;Zhou-Bo Duan,&nbsp;Li-Fang Niu","doi":"10.1007/s12043-024-02791-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the travelling wave parametric amplifier-superconducting nonlinear asymmetric inductive element (TWPA-SNAIL) transmission line circuit equation and its variable coefficients form, which may describe transmission line circuits for travelling wave parametric amplifiers including superconducting nonlinear asymmetric inductive elements. We derive some exact solutions, including dark soliton, bright soliton, periodic, trigonometric function and hyperbolic function solutions using Jacobi elliptic function expansion method. The soliton solutions of this circuit equation are useful to analogue black–white hole event horizon pairs. To better describe the dynamical behaviour of these solutions, we plot three-dimensional density and two-dimensional images. By varying the parameters, we find that some parameters have an effect on the structure of the solution. In addition, for the variable coefficient equations, we present images containing trigonometric and exponential functions in the solution and obtain some satisfactory results by comparing the graphs with the coefficient functions. The results show that the Jacobi elliptic function expansion method is a remarkable, direct and desirable method for solving a class of nonlinear partial differential equations.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"98 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soliton solutions of the TWPA-SNAIL transmission line circuit equation under continuum approximation via the Jacobi elliptic function expansion method\",\"authors\":\"Bo Liu,&nbsp;Zhou-Bo Duan,&nbsp;Li-Fang Niu\",\"doi\":\"10.1007/s12043-024-02791-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the travelling wave parametric amplifier-superconducting nonlinear asymmetric inductive element (TWPA-SNAIL) transmission line circuit equation and its variable coefficients form, which may describe transmission line circuits for travelling wave parametric amplifiers including superconducting nonlinear asymmetric inductive elements. We derive some exact solutions, including dark soliton, bright soliton, periodic, trigonometric function and hyperbolic function solutions using Jacobi elliptic function expansion method. The soliton solutions of this circuit equation are useful to analogue black–white hole event horizon pairs. To better describe the dynamical behaviour of these solutions, we plot three-dimensional density and two-dimensional images. By varying the parameters, we find that some parameters have an effect on the structure of the solution. In addition, for the variable coefficient equations, we present images containing trigonometric and exponential functions in the solution and obtain some satisfactory results by comparing the graphs with the coefficient functions. The results show that the Jacobi elliptic function expansion method is a remarkable, direct and desirable method for solving a class of nonlinear partial differential equations.</p></div>\",\"PeriodicalId\":743,\"journal\":{\"name\":\"Pramana\",\"volume\":\"98 3\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pramana\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12043-024-02791-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-024-02791-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了行波参数放大器-超导非线性非对称电感元件(TWPA-SNAIL)传输线电路方程及其可变系数形式,它可以描述包括超导非线性非对称电感元件在内的行波参数放大器的传输线电路。我们利用雅可比椭圆函数展开法推导出一些精确解,包括暗孤子解、亮孤子解、周期解、三角函数解和双曲函数解。该电路方程的孤子解有助于模拟黑白洞事件视界对。为了更好地描述这些解的动力学行为,我们绘制了三维密度和二维图像。通过改变参数,我们发现一些参数对解的结构有影响。此外,对于可变系数方程,我们给出了解中包含三角函数和指数函数的图像,并通过比较图形和系数函数获得了一些令人满意的结果。结果表明,雅可比椭圆函数展开法是求解一类非线性偏微分方程的显著、直接和理想的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Soliton solutions of the TWPA-SNAIL transmission line circuit equation under continuum approximation via the Jacobi elliptic function expansion method

Soliton solutions of the TWPA-SNAIL transmission line circuit equation under continuum approximation via the Jacobi elliptic function expansion method

In this paper, we study the travelling wave parametric amplifier-superconducting nonlinear asymmetric inductive element (TWPA-SNAIL) transmission line circuit equation and its variable coefficients form, which may describe transmission line circuits for travelling wave parametric amplifiers including superconducting nonlinear asymmetric inductive elements. We derive some exact solutions, including dark soliton, bright soliton, periodic, trigonometric function and hyperbolic function solutions using Jacobi elliptic function expansion method. The soliton solutions of this circuit equation are useful to analogue black–white hole event horizon pairs. To better describe the dynamical behaviour of these solutions, we plot three-dimensional density and two-dimensional images. By varying the parameters, we find that some parameters have an effect on the structure of the solution. In addition, for the variable coefficient equations, we present images containing trigonometric and exponential functions in the solution and obtain some satisfactory results by comparing the graphs with the coefficient functions. The results show that the Jacobi elliptic function expansion method is a remarkable, direct and desirable method for solving a class of nonlinear partial differential equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信