估算电子束等离子体系统平衡等离子体量的分析模型

IF 2.7 3区 物理与天体物理 Q2 PHYSICS, APPLIED
Haomin Sun, Jian Chen, Guangyu Sun, Liang Xu
{"title":"估算电子束等离子体系统平衡等离子体量的分析模型","authors":"Haomin Sun, Jian Chen, Guangyu Sun, Liang Xu","doi":"10.1063/5.0209651","DOIUrl":null,"url":null,"abstract":"We develop an analytical model for estimating the equilibrium quantities, such as electron temperature and number density, in an electron beam–plasma interaction system. This model provides a convenient way to calculate the effective electron temperature and density by considering the energy balance of the bulk cold electrons. Six energy sources/losses terms relevant to the cold electrons are accounted for, where quasi-linear theory is applied for estimating wave heating at equilibrium. We compare this calculation with the particle-in-cell (PIC) simulation results and find good agreement. Based on these results, we then consider two situations where we can simplify our model. The first is dominated by the balance between electron–electron Coulomb collisions and loss to the anode, which is mostly relevant to the conduction phase of plasma switches. The second is dominated by wave heating balanced by the anode loss, relevant to the electron beam–plasma discharge systems. We then couple our simplified energy balance model with the ion diffusion model and solve both the number density and the electron temperature as functions of the current density, electrode distance, pressure, and applied voltage, where a nice agreement is also obtained when comparing to PIC simulations.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"46 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical model for estimating the equilibrium plasma quantities in an electron beam–plasma system\",\"authors\":\"Haomin Sun, Jian Chen, Guangyu Sun, Liang Xu\",\"doi\":\"10.1063/5.0209651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop an analytical model for estimating the equilibrium quantities, such as electron temperature and number density, in an electron beam–plasma interaction system. This model provides a convenient way to calculate the effective electron temperature and density by considering the energy balance of the bulk cold electrons. Six energy sources/losses terms relevant to the cold electrons are accounted for, where quasi-linear theory is applied for estimating wave heating at equilibrium. We compare this calculation with the particle-in-cell (PIC) simulation results and find good agreement. Based on these results, we then consider two situations where we can simplify our model. The first is dominated by the balance between electron–electron Coulomb collisions and loss to the anode, which is mostly relevant to the conduction phase of plasma switches. The second is dominated by wave heating balanced by the anode loss, relevant to the electron beam–plasma discharge systems. We then couple our simplified energy balance model with the ion diffusion model and solve both the number density and the electron temperature as functions of the current density, electrode distance, pressure, and applied voltage, where a nice agreement is also obtained when comparing to PIC simulations.\",\"PeriodicalId\":15088,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0209651\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0209651","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了一个分析模型,用于估算电子束-等离子体相互作用系统中的电子温度和数量密度等平衡量。该模型通过考虑大量冷电子的能量平衡,为计算有效电子温度和密度提供了一种便捷的方法。该模型考虑了与冷电子相关的六个能量源/损耗项,并应用准线性理论估算平衡状态下的波加热。我们将这一计算结果与粒子室中模拟(PIC)结果进行了比较,发现两者吻合得很好。基于这些结果,我们考虑了可以简化模型的两种情况。第一种情况是电子-电子库仑碰撞与阳极损耗之间的平衡,这主要与等离子开关的传导阶段有关。第二种是由阳极损耗平衡的波加热所主导,与电子束-等离子体放电系统有关。然后,我们将简化的能量平衡模型与离子扩散模型结合起来,并将数量密度和电子温度作为电流密度、电极距离、压力和外加电压的函数进行求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical model for estimating the equilibrium plasma quantities in an electron beam–plasma system
We develop an analytical model for estimating the equilibrium quantities, such as electron temperature and number density, in an electron beam–plasma interaction system. This model provides a convenient way to calculate the effective electron temperature and density by considering the energy balance of the bulk cold electrons. Six energy sources/losses terms relevant to the cold electrons are accounted for, where quasi-linear theory is applied for estimating wave heating at equilibrium. We compare this calculation with the particle-in-cell (PIC) simulation results and find good agreement. Based on these results, we then consider two situations where we can simplify our model. The first is dominated by the balance between electron–electron Coulomb collisions and loss to the anode, which is mostly relevant to the conduction phase of plasma switches. The second is dominated by wave heating balanced by the anode loss, relevant to the electron beam–plasma discharge systems. We then couple our simplified energy balance model with the ion diffusion model and solve both the number density and the electron temperature as functions of the current density, electrode distance, pressure, and applied voltage, where a nice agreement is also obtained when comparing to PIC simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Physics
Journal of Applied Physics 物理-物理:应用
CiteScore
5.40
自引率
9.40%
发文量
1534
审稿时长
2.3 months
期刊介绍: The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research. Topics covered in JAP are diverse and reflect the most current applied physics research, including: Dielectrics, ferroelectrics, and multiferroics- Electrical discharges, plasmas, and plasma-surface interactions- Emerging, interdisciplinary, and other fields of applied physics- Magnetism, spintronics, and superconductivity- Organic-Inorganic systems, including organic electronics- Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena- Physics of devices and sensors- Physics of materials, including electrical, thermal, mechanical and other properties- Physics of matter under extreme conditions- Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena- Physics of semiconductors- Soft matter, fluids, and biophysics- Thin films, interfaces, and surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信