Haonan Ju, Tianming Ye, Wenxiang Hu, Hengguang Shen
{"title":"利用斯通里波对粘接界面进行超声波表征","authors":"Haonan Ju, Tianming Ye, Wenxiang Hu, Hengguang Shen","doi":"10.1063/5.0222221","DOIUrl":null,"url":null,"abstract":"An ultrasonic nondestructive method for evaluating bonding interface properties using Stoneley waves was proposed. First, a theoretical model was established. In this model, the dispersion relationship of the Stoneley wave at the quartz–steel interface and the transient signals generated by a pulse were analyzed. Significant differences were observed in the dispersion characteristics of Stoneley waves under different weak bonding conditions. Laser ultrasonic experiments were conducted to confirm the theoretical predictions, in which different interfacial strengths were simulated through the bonding–curing times. Based on these results, the inversion method was implemented to reconstruct the interfacial stiffness by using the corresponding dispersion of the Stoneley wave at different quartz–steel bonding interfaces extracted by the spectral analysis method. The results showed a similar tendency to those shown by theoretical predictions. Finally, the reconstructed interfacial stiffnesses were used to calculate the transient waveforms of the interface waves at different bonding–curing times, and the results showed good consistency with the experimental results, thereby verifying the rationality of the inversion results.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"12 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasonic characterization of bonding interfaces using Stoneley waves\",\"authors\":\"Haonan Ju, Tianming Ye, Wenxiang Hu, Hengguang Shen\",\"doi\":\"10.1063/5.0222221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ultrasonic nondestructive method for evaluating bonding interface properties using Stoneley waves was proposed. First, a theoretical model was established. In this model, the dispersion relationship of the Stoneley wave at the quartz–steel interface and the transient signals generated by a pulse were analyzed. Significant differences were observed in the dispersion characteristics of Stoneley waves under different weak bonding conditions. Laser ultrasonic experiments were conducted to confirm the theoretical predictions, in which different interfacial strengths were simulated through the bonding–curing times. Based on these results, the inversion method was implemented to reconstruct the interfacial stiffness by using the corresponding dispersion of the Stoneley wave at different quartz–steel bonding interfaces extracted by the spectral analysis method. The results showed a similar tendency to those shown by theoretical predictions. Finally, the reconstructed interfacial stiffnesses were used to calculate the transient waveforms of the interface waves at different bonding–curing times, and the results showed good consistency with the experimental results, thereby verifying the rationality of the inversion results.\",\"PeriodicalId\":15088,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0222221\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0222221","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Ultrasonic characterization of bonding interfaces using Stoneley waves
An ultrasonic nondestructive method for evaluating bonding interface properties using Stoneley waves was proposed. First, a theoretical model was established. In this model, the dispersion relationship of the Stoneley wave at the quartz–steel interface and the transient signals generated by a pulse were analyzed. Significant differences were observed in the dispersion characteristics of Stoneley waves under different weak bonding conditions. Laser ultrasonic experiments were conducted to confirm the theoretical predictions, in which different interfacial strengths were simulated through the bonding–curing times. Based on these results, the inversion method was implemented to reconstruct the interfacial stiffness by using the corresponding dispersion of the Stoneley wave at different quartz–steel bonding interfaces extracted by the spectral analysis method. The results showed a similar tendency to those shown by theoretical predictions. Finally, the reconstructed interfacial stiffnesses were used to calculate the transient waveforms of the interface waves at different bonding–curing times, and the results showed good consistency with the experimental results, thereby verifying the rationality of the inversion results.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces