模拟熔点的通用自动方法

Fu-Zhi Dai, Si-Hao Yuan, Yan-Bo Hao, Xin-Fu Gu, Shipeng Zhu, Jidong Hu, Yifen Xu
{"title":"模拟熔点的通用自动方法","authors":"Fu-Zhi Dai, Si-Hao Yuan, Yan-Bo Hao, Xin-Fu Gu, Shipeng Zhu, Jidong Hu, Yifen Xu","doi":"arxiv-2408.17270","DOIUrl":null,"url":null,"abstract":"The melting point of a material constitutes a pivotal property with profound\nimplications across various disciplines of science, engineering, and\ntechnology. Recent advancements in machine learning potentials have\nrevolutionized the field, enabling ab initio predictions of materials' melting\npoints through atomic-scale simulations. However, a universal simulation\nmethodology that can be universally applied to any material remains elusive. In\nthis paper, we present a generic, fully automated workflow designed to predict\nthe melting points of materials utilizing molecular dynamics simulations. This\nworkflow incorporates two tailored simulation modalities, each addressing\nscenarios with and without elemental partitioning between solid and liquid\nphases. When the compositions of both phases remain unchanged upon melting or\nsolidification, signifying the absence of partitioning, the melting point is\nidentified as the temperature at which these phases coexist in equilibrium.\nConversely, in cases where elemental partitioning occurs, our workflow\nestimates both the nominal melting point, marking the initial transition from\nsolid to liquid, and the nominal solidification point, indicating the reverse\nprocess. To ensure precision in determining these critical temperatures, we\nemploy an innovative temperature-volume data fitting technique, suitable for a\ndiverse range of materials exhibiting notable volume disparities between their\nsolid and liquid states. This comprehensive approach offers a robust and\nversatile solution for predicting melting points, fostering advancements in\nmaterials science and technology.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generic and Automated Methodology to Simulate Melting Point\",\"authors\":\"Fu-Zhi Dai, Si-Hao Yuan, Yan-Bo Hao, Xin-Fu Gu, Shipeng Zhu, Jidong Hu, Yifen Xu\",\"doi\":\"arxiv-2408.17270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The melting point of a material constitutes a pivotal property with profound\\nimplications across various disciplines of science, engineering, and\\ntechnology. Recent advancements in machine learning potentials have\\nrevolutionized the field, enabling ab initio predictions of materials' melting\\npoints through atomic-scale simulations. However, a universal simulation\\nmethodology that can be universally applied to any material remains elusive. In\\nthis paper, we present a generic, fully automated workflow designed to predict\\nthe melting points of materials utilizing molecular dynamics simulations. This\\nworkflow incorporates two tailored simulation modalities, each addressing\\nscenarios with and without elemental partitioning between solid and liquid\\nphases. When the compositions of both phases remain unchanged upon melting or\\nsolidification, signifying the absence of partitioning, the melting point is\\nidentified as the temperature at which these phases coexist in equilibrium.\\nConversely, in cases where elemental partitioning occurs, our workflow\\nestimates both the nominal melting point, marking the initial transition from\\nsolid to liquid, and the nominal solidification point, indicating the reverse\\nprocess. To ensure precision in determining these critical temperatures, we\\nemploy an innovative temperature-volume data fitting technique, suitable for a\\ndiverse range of materials exhibiting notable volume disparities between their\\nsolid and liquid states. This comprehensive approach offers a robust and\\nversatile solution for predicting melting points, fostering advancements in\\nmaterials science and technology.\",\"PeriodicalId\":501369,\"journal\":{\"name\":\"arXiv - PHYS - Computational Physics\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.17270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

材料的熔点是一个关键属性,对科学、工程和技术的各个学科都有深远影响。机器学习潜能的最新进展使这一领域发生了革命性的变化,通过原子尺度的模拟,可以对材料的熔点进行自始至终的预测。然而,一种可普遍应用于任何材料的通用模拟方法仍然遥不可及。在本文中,我们介绍了一种通用的全自动工作流程,旨在利用分子动力学模拟预测材料的熔点。该工作流程包含两种量身定制的模拟模式,分别针对固相和液相之间存在和不存在元素分区的情况。当熔化或凝固时,两相的成分保持不变,表明不存在分区,则熔点被确定为两相共存的平衡温度。相反,在发生元素分区的情况下,我们的工作流程既能估计标称熔点,标志着从固态到液态的初始转变,也能估计标称凝固点,表明相反的过程。为确保精确确定这些临界温度,我们采用了创新的温度-体积数据拟合技术,适用于固态和液态之间表现出显著体积差异的各种材料。这种综合方法为预测熔点提供了一种稳健、通用的解决方案,促进了材料科学与技术的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generic and Automated Methodology to Simulate Melting Point
The melting point of a material constitutes a pivotal property with profound implications across various disciplines of science, engineering, and technology. Recent advancements in machine learning potentials have revolutionized the field, enabling ab initio predictions of materials' melting points through atomic-scale simulations. However, a universal simulation methodology that can be universally applied to any material remains elusive. In this paper, we present a generic, fully automated workflow designed to predict the melting points of materials utilizing molecular dynamics simulations. This workflow incorporates two tailored simulation modalities, each addressing scenarios with and without elemental partitioning between solid and liquid phases. When the compositions of both phases remain unchanged upon melting or solidification, signifying the absence of partitioning, the melting point is identified as the temperature at which these phases coexist in equilibrium. Conversely, in cases where elemental partitioning occurs, our workflow estimates both the nominal melting point, marking the initial transition from solid to liquid, and the nominal solidification point, indicating the reverse process. To ensure precision in determining these critical temperatures, we employ an innovative temperature-volume data fitting technique, suitable for a diverse range of materials exhibiting notable volume disparities between their solid and liquid states. This comprehensive approach offers a robust and versatile solution for predicting melting points, fostering advancements in materials science and technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信