SOLAX:神经网络支持的费米子量子系统 Python 求解器

Louis Thirion, Philipp Hansmann, Pavlo Bilous
{"title":"SOLAX:神经网络支持的费米子量子系统 Python 求解器","authors":"Louis Thirion, Philipp Hansmann, Pavlo Bilous","doi":"arxiv-2408.16915","DOIUrl":null,"url":null,"abstract":"Numerical modeling of fermionic many-body quantum systems presents similar\nchallenges across various research domains, necessitating universal tools,\nincluding state-of-the-art machine learning techniques. Here, we introduce\nSOLAX, a Python library designed to compute and analyze fermionic quantum\nsystems using the formalism of second quantization. SOLAX provides a modular\nframework for constructing and manipulating basis sets, quantum states, and\noperators, facilitating the simulation of electronic structures and determining\nmany-body quantum states in finite-size Hilbert spaces. The library integrates\nmachine learning capabilities to mitigate the exponential growth of Hilbert\nspace dimensions in large quantum clusters. The core low-level functionalities\nare implemented using the recently developed Python library JAX. Demonstrated\nthrough its application to the Single Impurity Anderson Model, SOLAX offers a\nflexible and powerful tool for researchers addressing the challenges of\nmany-body quantum systems across a broad spectrum of fields, including atomic\nphysics, quantum chemistry, and condensed matter physics.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOLAX: A Python solver for fermionic quantum systems with neural network support\",\"authors\":\"Louis Thirion, Philipp Hansmann, Pavlo Bilous\",\"doi\":\"arxiv-2408.16915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical modeling of fermionic many-body quantum systems presents similar\\nchallenges across various research domains, necessitating universal tools,\\nincluding state-of-the-art machine learning techniques. Here, we introduce\\nSOLAX, a Python library designed to compute and analyze fermionic quantum\\nsystems using the formalism of second quantization. SOLAX provides a modular\\nframework for constructing and manipulating basis sets, quantum states, and\\noperators, facilitating the simulation of electronic structures and determining\\nmany-body quantum states in finite-size Hilbert spaces. The library integrates\\nmachine learning capabilities to mitigate the exponential growth of Hilbert\\nspace dimensions in large quantum clusters. The core low-level functionalities\\nare implemented using the recently developed Python library JAX. Demonstrated\\nthrough its application to the Single Impurity Anderson Model, SOLAX offers a\\nflexible and powerful tool for researchers addressing the challenges of\\nmany-body quantum systems across a broad spectrum of fields, including atomic\\nphysics, quantum chemistry, and condensed matter physics.\",\"PeriodicalId\":501369,\"journal\":{\"name\":\"arXiv - PHYS - Computational Physics\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

费米子多体量子系统的数值建模在各个研究领域都面临着类似的挑战,因此需要通用的工具,包括最先进的机器学习技术。在此,我们介绍 SOLAX,这是一个 Python 库,旨在使用二次量子化形式计算和分析费米子量子系统。SOLAX 提供了一个模块化框架,用于构建和操作基集、量子态和运算器,便于模拟电子结构和确定有限大小希尔伯特空间中的多体量子态。该库集成了机器学习功能,以缓解大型量子集群中希尔伯特空间维度的指数级增长。其核心底层功能是通过最近开发的 Python 库 JAX 实现的。通过在单杂质安德森模型(Single Impurity Anderson Model)中的应用,SOLAX 为研究人员提供了灵活而强大的工具,帮助他们应对原子物理、量子化学和凝聚态物理等广泛领域的多体量子系统挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOLAX: A Python solver for fermionic quantum systems with neural network support
Numerical modeling of fermionic many-body quantum systems presents similar challenges across various research domains, necessitating universal tools, including state-of-the-art machine learning techniques. Here, we introduce SOLAX, a Python library designed to compute and analyze fermionic quantum systems using the formalism of second quantization. SOLAX provides a modular framework for constructing and manipulating basis sets, quantum states, and operators, facilitating the simulation of electronic structures and determining many-body quantum states in finite-size Hilbert spaces. The library integrates machine learning capabilities to mitigate the exponential growth of Hilbert space dimensions in large quantum clusters. The core low-level functionalities are implemented using the recently developed Python library JAX. Demonstrated through its application to the Single Impurity Anderson Model, SOLAX offers a flexible and powerful tool for researchers addressing the challenges of many-body quantum systems across a broad spectrum of fields, including atomic physics, quantum chemistry, and condensed matter physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信