利用 Kolmogorov-Arnold 网络高效预测势能面和物理特性

Rui Wang, Hongyu Yu, Yang Zhong, Hongjun Xiang
{"title":"利用 Kolmogorov-Arnold 网络高效预测势能面和物理特性","authors":"Rui Wang, Hongyu Yu, Yang Zhong, Hongjun Xiang","doi":"arxiv-2409.03430","DOIUrl":null,"url":null,"abstract":"The application of machine learning methodologies for predicting properties\nwithin materials science has garnered significant attention. Among recent\nadvancements, Kolmogorov-Arnold Networks (KANs) have emerged as a promising\nalternative to traditional Multi-Layer Perceptrons (MLPs). This study evaluates\nthe impact of substituting MLPs with KANs within three established machine\nlearning frameworks: Allegro, Neural Equivariant Interatomic Potentials\n(NequIP), and the Edge-Based Tensor Prediction Graph Neural Network (ETGNN).\nOur results demonstrate that the integration of KANs generally yields enhanced\nprediction accuracies. Specifically, replacing MLPs with KANs in the output\nblocks leads to notable improvements in accuracy and, in certain scenarios,\nalso results in reduced training times. Furthermore, employing KANs exclusively\nin the output block facilitates faster inference and improved computational\nefficiency relative to utilizing KANs throughout the entire model. The\nselection of an optimal basis function for KANs is found to be contingent upon\nthe particular problem at hand. Our results demonstrate the strong potential of\nKANs in enhancing machine learning potentials and material property\npredictions.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient prediction of potential energy surface and physical properties with Kolmogorov-Arnold Networks\",\"authors\":\"Rui Wang, Hongyu Yu, Yang Zhong, Hongjun Xiang\",\"doi\":\"arxiv-2409.03430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of machine learning methodologies for predicting properties\\nwithin materials science has garnered significant attention. Among recent\\nadvancements, Kolmogorov-Arnold Networks (KANs) have emerged as a promising\\nalternative to traditional Multi-Layer Perceptrons (MLPs). This study evaluates\\nthe impact of substituting MLPs with KANs within three established machine\\nlearning frameworks: Allegro, Neural Equivariant Interatomic Potentials\\n(NequIP), and the Edge-Based Tensor Prediction Graph Neural Network (ETGNN).\\nOur results demonstrate that the integration of KANs generally yields enhanced\\nprediction accuracies. Specifically, replacing MLPs with KANs in the output\\nblocks leads to notable improvements in accuracy and, in certain scenarios,\\nalso results in reduced training times. Furthermore, employing KANs exclusively\\nin the output block facilitates faster inference and improved computational\\nefficiency relative to utilizing KANs throughout the entire model. The\\nselection of an optimal basis function for KANs is found to be contingent upon\\nthe particular problem at hand. Our results demonstrate the strong potential of\\nKANs in enhancing machine learning potentials and material property\\npredictions.\",\"PeriodicalId\":501369,\"journal\":{\"name\":\"arXiv - PHYS - Computational Physics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习方法在材料科学特性预测中的应用已引起广泛关注。在最近取得的进展中,Kolmogorov-Arnold 网络(KANs)已成为替代传统多层感知器(MLPs)的一种有前途的方法。本研究评估了在三个成熟的机器学习框架内用 KAN 替代 MLP 的影响:我们的研究结果表明,KANs 的集成通常能提高预测精度。具体来说,在输出块中用 KAN 替代 MLP,可以显著提高准确率,在某些情况下还能缩短训练时间。此外,与在整个模型中使用 KAN 相比,仅在输出块中使用 KAN 可以加快推理速度并提高计算效率。我们发现,为 KANs 选择最佳基函数取决于手头的特定问题。我们的研究结果证明了 KANs 在增强机器学习潜力和材料特性预测方面的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient prediction of potential energy surface and physical properties with Kolmogorov-Arnold Networks
The application of machine learning methodologies for predicting properties within materials science has garnered significant attention. Among recent advancements, Kolmogorov-Arnold Networks (KANs) have emerged as a promising alternative to traditional Multi-Layer Perceptrons (MLPs). This study evaluates the impact of substituting MLPs with KANs within three established machine learning frameworks: Allegro, Neural Equivariant Interatomic Potentials (NequIP), and the Edge-Based Tensor Prediction Graph Neural Network (ETGNN). Our results demonstrate that the integration of KANs generally yields enhanced prediction accuracies. Specifically, replacing MLPs with KANs in the output blocks leads to notable improvements in accuracy and, in certain scenarios, also results in reduced training times. Furthermore, employing KANs exclusively in the output block facilitates faster inference and improved computational efficiency relative to utilizing KANs throughout the entire model. The selection of an optimal basis function for KANs is found to be contingent upon the particular problem at hand. Our results demonstrate the strong potential of KANs in enhancing machine learning potentials and material property predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信