通过应用材料中的图神经网络研究材料界面扩散现象

Zirui Zhao, Haifeng-Li
{"title":"通过应用材料中的图神经网络研究材料界面扩散现象","authors":"Zirui Zhao, Haifeng-Li","doi":"arxiv-2409.05306","DOIUrl":null,"url":null,"abstract":"Understanding and predicting interface diffusion phenomena in materials is\ncrucial for various industrial applications, including semiconductor\nmanufacturing, battery technology, and catalysis. In this study, we propose a\nnovel approach utilizing Graph Neural Networks (GNNs) to investigate and model\nmaterial interface diffusion. We begin by collecting experimental and simulated\ndata on diffusion coefficients, concentration gradients, and other relevant\nparameters from diverse material systems. The data are preprocessed, and key\nfeatures influencing interface diffusion are extracted. Subsequently, we\nconstruct a GNN model tailored to the diffusion problem, with a graph\nrepresentation capturing the atomic structure of materials. The model\narchitecture includes multiple graph convolutional layers for feature\naggregation and update, as well as optional graph attention layers to capture\ncomplex relationships between atoms. We train and validate the GNN model using\nthe preprocessed data, achieving accurate predictions of diffusion\ncoefficients, diffusion rates, concentration profiles, and potential diffusion\npathways. Our approach offers insights into the underlying mechanisms of\ninterface diffusion and provides a valuable tool for optimizing material design\nand engineering. Additionally, our method offers possible strategies to solve\nthe longstanding problems related to materials interface diffusion.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating Material Interface Diffusion Phenomena through Graph Neural Networks in Applied Materials\",\"authors\":\"Zirui Zhao, Haifeng-Li\",\"doi\":\"arxiv-2409.05306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding and predicting interface diffusion phenomena in materials is\\ncrucial for various industrial applications, including semiconductor\\nmanufacturing, battery technology, and catalysis. In this study, we propose a\\nnovel approach utilizing Graph Neural Networks (GNNs) to investigate and model\\nmaterial interface diffusion. We begin by collecting experimental and simulated\\ndata on diffusion coefficients, concentration gradients, and other relevant\\nparameters from diverse material systems. The data are preprocessed, and key\\nfeatures influencing interface diffusion are extracted. Subsequently, we\\nconstruct a GNN model tailored to the diffusion problem, with a graph\\nrepresentation capturing the atomic structure of materials. The model\\narchitecture includes multiple graph convolutional layers for feature\\naggregation and update, as well as optional graph attention layers to capture\\ncomplex relationships between atoms. We train and validate the GNN model using\\nthe preprocessed data, achieving accurate predictions of diffusion\\ncoefficients, diffusion rates, concentration profiles, and potential diffusion\\npathways. Our approach offers insights into the underlying mechanisms of\\ninterface diffusion and provides a valuable tool for optimizing material design\\nand engineering. Additionally, our method offers possible strategies to solve\\nthe longstanding problems related to materials interface diffusion.\",\"PeriodicalId\":501369,\"journal\":{\"name\":\"arXiv - PHYS - Computational Physics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解和预测材料中的界面扩散现象对于半导体制造、电池技术和催化等各种工业应用至关重要。在本研究中,我们提出了一种利用图神经网络(GNN)研究材料界面扩散并为其建模的新方法。我们首先从不同的材料系统中收集有关扩散系数、浓度梯度和其他相关参数的实验和模拟数据。对数据进行预处理,提取影响界面扩散的关键特征。随后,我们构建了一个针对扩散问题的 GNN 模型,其图形表示捕捉了材料的原子结构。模型架构包括用于特征聚集和更新的多个图卷积层,以及用于捕捉原子间复杂关系的可选图关注层。我们利用预处理数据对 GNN 模型进行了训练和验证,实现了对扩散系数、扩散速率、浓度曲线和潜在扩散路径的准确预测。我们的方法深入揭示了界面扩散的内在机制,为优化材料设计和工程提供了宝贵的工具。此外,我们的方法还为解决与材料界面扩散相关的长期问题提供了可能的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating Material Interface Diffusion Phenomena through Graph Neural Networks in Applied Materials
Understanding and predicting interface diffusion phenomena in materials is crucial for various industrial applications, including semiconductor manufacturing, battery technology, and catalysis. In this study, we propose a novel approach utilizing Graph Neural Networks (GNNs) to investigate and model material interface diffusion. We begin by collecting experimental and simulated data on diffusion coefficients, concentration gradients, and other relevant parameters from diverse material systems. The data are preprocessed, and key features influencing interface diffusion are extracted. Subsequently, we construct a GNN model tailored to the diffusion problem, with a graph representation capturing the atomic structure of materials. The model architecture includes multiple graph convolutional layers for feature aggregation and update, as well as optional graph attention layers to capture complex relationships between atoms. We train and validate the GNN model using the preprocessed data, achieving accurate predictions of diffusion coefficients, diffusion rates, concentration profiles, and potential diffusion pathways. Our approach offers insights into the underlying mechanisms of interface diffusion and provides a valuable tool for optimizing material design and engineering. Additionally, our method offers possible strategies to solve the longstanding problems related to materials interface diffusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信