Joanna Piper Morgan, Ilham Variansyah, Braxton Cuneo, Todd S. Palmer, Kyle E. Niemeyer
{"title":"通过 Numba 在 MCDC 中实现高性能便携式蒙特卡洛中子传输","authors":"Joanna Piper Morgan, Ilham Variansyah, Braxton Cuneo, Todd S. Palmer, Kyle E. Niemeyer","doi":"arxiv-2409.04668","DOIUrl":null,"url":null,"abstract":"Finding a software engineering approach that allows for portability, rapid\ndevelopment, open collaboration, and performance for high performance computing\non GPUs and CPUs is a challenge. We implement a portability scheme using the\nNumba compiler for Python in Monte Carlo / Dynamic Code (MC/DC), a new neutron\ntransport application for rapid Monte Carlo methods development. Using this\nscheme, we have built MC/DC as a single source, single language, single\ncompiler application that can run as a pure Python, compiled CPU, or compiled\nGPU solver. In GPU mode, we use Numba paired with an asynchronous GPU scheduler\ncalled Harmonize to increase GPU performance. We present performance results\nfor a time-dependent problem on both the CPU and GPU and compare them to a\nproduction code.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Portable Monte Carlo Neutron Transport in MCDC via Numba\",\"authors\":\"Joanna Piper Morgan, Ilham Variansyah, Braxton Cuneo, Todd S. Palmer, Kyle E. Niemeyer\",\"doi\":\"arxiv-2409.04668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding a software engineering approach that allows for portability, rapid\\ndevelopment, open collaboration, and performance for high performance computing\\non GPUs and CPUs is a challenge. We implement a portability scheme using the\\nNumba compiler for Python in Monte Carlo / Dynamic Code (MC/DC), a new neutron\\ntransport application for rapid Monte Carlo methods development. Using this\\nscheme, we have built MC/DC as a single source, single language, single\\ncompiler application that can run as a pure Python, compiled CPU, or compiled\\nGPU solver. In GPU mode, we use Numba paired with an asynchronous GPU scheduler\\ncalled Harmonize to increase GPU performance. We present performance results\\nfor a time-dependent problem on both the CPU and GPU and compare them to a\\nproduction code.\",\"PeriodicalId\":501369,\"journal\":{\"name\":\"arXiv - PHYS - Computational Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
为 GPU 和 CPU 上的高性能计算寻找一种可移植性、快速开发、开放协作和性能的软件工程方法是一项挑战。我们在蒙特卡洛/动态代码(MC/DC)中使用Python的Numba编译器实现了一种可移植性方案,MC/DC是一种用于快速蒙特卡洛方法开发的新型中子传输应用程序。利用这一方案,我们将 MC/DC 构建成了一个单源代码、单语言、单编译器的应用程序,可以作为纯 Python、编译 CPU 或编译 GPU 的求解器运行。在 GPU 模式下,我们使用 Numba 搭配称为 Harmonize 的异步 GPU 调度来提高 GPU 性能。我们展示了 CPU 和 GPU 上一个随时间变化的问题的性能结果,并将其与生产代码进行了比较。
Performance Portable Monte Carlo Neutron Transport in MCDC via Numba
Finding a software engineering approach that allows for portability, rapid
development, open collaboration, and performance for high performance computing
on GPUs and CPUs is a challenge. We implement a portability scheme using the
Numba compiler for Python in Monte Carlo / Dynamic Code (MC/DC), a new neutron
transport application for rapid Monte Carlo methods development. Using this
scheme, we have built MC/DC as a single source, single language, single
compiler application that can run as a pure Python, compiled CPU, or compiled
GPU solver. In GPU mode, we use Numba paired with an asynchronous GPU scheduler
called Harmonize to increase GPU performance. We present performance results
for a time-dependent problem on both the CPU and GPU and compare them to a
production code.