二维长程伊辛模型相分离过程中老化的非普遍性

Fabio Müller, Henrik Christiansen, Wolfhard Janke
{"title":"二维长程伊辛模型相分离过程中老化的非普遍性","authors":"Fabio Müller, Henrik Christiansen, Wolfhard Janke","doi":"arxiv-2409.08050","DOIUrl":null,"url":null,"abstract":"We investigate the aging properties of phase-separation kinetics following\nquenches from $T=\\infty$ to a finite temperature below $T_c$ of the\nparadigmatic two-dimensional conserved Ising model with power-law decaying\nlong-range interactions $\\sim r^{-(2 + \\sigma)}$. Physical aging with a\npower-law decay of the two-time autocorrelation function $C(t,t_w)\\sim\n\\left(t/t_w\\right)^{-\\lambda/z}$ is observed, displaying a complex dependence\nof the autocorrelation exponent $\\lambda$ on $\\sigma$. A value of\n$\\lambda=3.500(26)$ for the corresponding nearest-neighbor model (which is\nrecovered as the $\\sigma \\rightarrow \\infty$ limes) is determined. The values\nof $\\lambda$ in the long-range regime ($\\sigma < 1$) are all compatible with\n$\\lambda \\approx 4$. In between, a continuous crossover is visible for $1\n\\lesssim \\sigma \\lesssim 2$ with non-universal, $\\sigma$-dependent values of\n$\\lambda$. The performed Metropolis Monte Carlo simulations are primarily\nenabled by our novel algorithm for long-range interacting systems.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-universality of aging during phase separation of the two-dimensional long-range Ising model\",\"authors\":\"Fabio Müller, Henrik Christiansen, Wolfhard Janke\",\"doi\":\"arxiv-2409.08050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the aging properties of phase-separation kinetics following\\nquenches from $T=\\\\infty$ to a finite temperature below $T_c$ of the\\nparadigmatic two-dimensional conserved Ising model with power-law decaying\\nlong-range interactions $\\\\sim r^{-(2 + \\\\sigma)}$. Physical aging with a\\npower-law decay of the two-time autocorrelation function $C(t,t_w)\\\\sim\\n\\\\left(t/t_w\\\\right)^{-\\\\lambda/z}$ is observed, displaying a complex dependence\\nof the autocorrelation exponent $\\\\lambda$ on $\\\\sigma$. A value of\\n$\\\\lambda=3.500(26)$ for the corresponding nearest-neighbor model (which is\\nrecovered as the $\\\\sigma \\\\rightarrow \\\\infty$ limes) is determined. The values\\nof $\\\\lambda$ in the long-range regime ($\\\\sigma < 1$) are all compatible with\\n$\\\\lambda \\\\approx 4$. In between, a continuous crossover is visible for $1\\n\\\\lesssim \\\\sigma \\\\lesssim 2$ with non-universal, $\\\\sigma$-dependent values of\\n$\\\\lambda$. The performed Metropolis Monte Carlo simulations are primarily\\nenabled by our novel algorithm for long-range interacting systems.\",\"PeriodicalId\":501369,\"journal\":{\"name\":\"arXiv - PHYS - Computational Physics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有幂律衰减长程相互作用 $\sim r^{-(2 + \sigma)}$ 的范式二维守恒伊辛模型从 $T=\infty$ 到低于 $T_c$ 的有限温度骤变之后相分离动力学的老化特性。观察到物理老化与两时间自相关函数 $C(t,t_w)\sim\left(t/t_w\right)^{-\lambda/z}$ 的幂律衰减有关,显示了自相关指数 $\lambda$ 与 $\sigma$ 的复杂依赖关系。对于相应的近邻模型,确定了一个值为$\lambda=3.500(26)$(该值是作为$\sigma \rightarrow \infty$倍频值恢复的)。在长程体系($\sigma < 1$)中,$\lambda$的值都与$\lambda \approx 4$相容。在两者之间,$1\lesssim \sigma \lesssim 2$的连续交叉是可见的,$\lambda$的值是非普遍的,与$\sigma$有关。所进行的 Metropolis 蒙特卡罗模拟主要得益于我们针对长程相互作用系统的新算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-universality of aging during phase separation of the two-dimensional long-range Ising model
We investigate the aging properties of phase-separation kinetics following quenches from $T=\infty$ to a finite temperature below $T_c$ of the paradigmatic two-dimensional conserved Ising model with power-law decaying long-range interactions $\sim r^{-(2 + \sigma)}$. Physical aging with a power-law decay of the two-time autocorrelation function $C(t,t_w)\sim \left(t/t_w\right)^{-\lambda/z}$ is observed, displaying a complex dependence of the autocorrelation exponent $\lambda$ on $\sigma$. A value of $\lambda=3.500(26)$ for the corresponding nearest-neighbor model (which is recovered as the $\sigma \rightarrow \infty$ limes) is determined. The values of $\lambda$ in the long-range regime ($\sigma < 1$) are all compatible with $\lambda \approx 4$. In between, a continuous crossover is visible for $1 \lesssim \sigma \lesssim 2$ with non-universal, $\sigma$-dependent values of $\lambda$. The performed Metropolis Monte Carlo simulations are primarily enabled by our novel algorithm for long-range interacting systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信