关于米塔格-勒弗勒式函数参数的微分法

Sergei V. Rogosin, Filippo Giraldi, Francesco Mainardi
{"title":"关于米塔格-勒弗勒式函数参数的微分法","authors":"Sergei V. Rogosin, Filippo Giraldi, Francesco Mainardi","doi":"arxiv-2408.05225","DOIUrl":null,"url":null,"abstract":"The formal term-by-term differentiation with respect to parameters is\ndemonstrated to be legitimate for the Mittag-Leffler type functions. The\njustification of differentiation formulas is made by using the concept of the\nuniform convergence. This approach is applied to the Mittag-Leffler function\ndepending on two parameters and, additionally, for the 3-parametric\nMittag-Leffler functions (namely, for the Prabhakar function and the Le Roy\ntype functions), as well as for the 4-parametric Mittag-Leffler function (and,\nin particular, for theWright function). The differentiation with respect to the\ninvolved parameters is discussed also in case those special functions which are\nrepresented via the Mellin-Barnes integrals.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On differentiation with respect to parameters of the functions of the Mittag-Leffler type\",\"authors\":\"Sergei V. Rogosin, Filippo Giraldi, Francesco Mainardi\",\"doi\":\"arxiv-2408.05225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The formal term-by-term differentiation with respect to parameters is\\ndemonstrated to be legitimate for the Mittag-Leffler type functions. The\\njustification of differentiation formulas is made by using the concept of the\\nuniform convergence. This approach is applied to the Mittag-Leffler function\\ndepending on two parameters and, additionally, for the 3-parametric\\nMittag-Leffler functions (namely, for the Prabhakar function and the Le Roy\\ntype functions), as well as for the 4-parametric Mittag-Leffler function (and,\\nin particular, for theWright function). The differentiation with respect to the\\ninvolved parameters is discussed also in case those special functions which are\\nrepresented via the Mellin-Barnes integrals.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于 Mittag-Leffler 型函数,证明了关于参数的正式逐项微分是合法的。利用均匀收敛概念对微分公式进行了论证。这种方法适用于取决于两个参数的 Mittag-Leffler 函数,此外还适用于 3 参数 Mittag-Leffler 函数(即 Prabhakar 函数和 Le Roy 型函数),以及 4 参数 Mittag-Leffler 函数(尤其是赖特函数)。对于那些通过梅林-巴恩斯积分表示的特殊函数,也讨论了与所涉及参数有关的微分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On differentiation with respect to parameters of the functions of the Mittag-Leffler type
The formal term-by-term differentiation with respect to parameters is demonstrated to be legitimate for the Mittag-Leffler type functions. The justification of differentiation formulas is made by using the concept of the uniform convergence. This approach is applied to the Mittag-Leffler function depending on two parameters and, additionally, for the 3-parametric Mittag-Leffler functions (namely, for the Prabhakar function and the Le Roy type functions), as well as for the 4-parametric Mittag-Leffler function (and, in particular, for theWright function). The differentiation with respect to the involved parameters is discussed also in case those special functions which are represented via the Mellin-Barnes integrals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信