{"title":"使用普通混凝土或再生混凝土层对受损钢筋混凝土梁的修复行为的影响","authors":"Ala’ Taleb Obaidat","doi":"10.1002/suco.202301054","DOIUrl":null,"url":null,"abstract":"This study utilized experimental research to investigate the efficiency of using normal aggregate concrete (NAC) or recycled aggregate concrete (RAC) as a new concrete layer for repairing projectile bullet damage to strengthening reinforced concrete (RC) beams. This study comprised the construction and testing of eight RC beams made of RAC and NAC. They are initially subjected to projectile bullets and after that tested with flexure load to evaluate the effect of using RAC and NAC that was investigated. The findings of test results demonstrate that the repaired specimens with RAC or NAC experienced a higher load capacity than the damaged control specimens. As such, this approach could potentially use to restore RAC or NAC beams were previously damaged by projectile bullets. In addition, the findings of this research indicate that the load capacity of the damaged RC beams that were previously repaired using the NAC layer was higher than the load capacity of the damaged RC beams that were repaired using the RAC layer. The load capacity enhanced significantly of (106%–118%) and (104%–113%), respectively, when NAC and RAC are utilized in repairs. Therefore, using either NAC or RAC concrete is more economical, environmentally friendly, and efficient than demolishing.","PeriodicalId":21988,"journal":{"name":"Structural Concrete","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of using normal concrete or recycled concrete layer on behavior of repaired projectile bullet damaged reinforced concrete beams\",\"authors\":\"Ala’ Taleb Obaidat\",\"doi\":\"10.1002/suco.202301054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study utilized experimental research to investigate the efficiency of using normal aggregate concrete (NAC) or recycled aggregate concrete (RAC) as a new concrete layer for repairing projectile bullet damage to strengthening reinforced concrete (RC) beams. This study comprised the construction and testing of eight RC beams made of RAC and NAC. They are initially subjected to projectile bullets and after that tested with flexure load to evaluate the effect of using RAC and NAC that was investigated. The findings of test results demonstrate that the repaired specimens with RAC or NAC experienced a higher load capacity than the damaged control specimens. As such, this approach could potentially use to restore RAC or NAC beams were previously damaged by projectile bullets. In addition, the findings of this research indicate that the load capacity of the damaged RC beams that were previously repaired using the NAC layer was higher than the load capacity of the damaged RC beams that were repaired using the RAC layer. The load capacity enhanced significantly of (106%–118%) and (104%–113%), respectively, when NAC and RAC are utilized in repairs. Therefore, using either NAC or RAC concrete is more economical, environmentally friendly, and efficient than demolishing.\",\"PeriodicalId\":21988,\"journal\":{\"name\":\"Structural Concrete\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Concrete\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/suco.202301054\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Concrete","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/suco.202301054","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Effect of using normal concrete or recycled concrete layer on behavior of repaired projectile bullet damaged reinforced concrete beams
This study utilized experimental research to investigate the efficiency of using normal aggregate concrete (NAC) or recycled aggregate concrete (RAC) as a new concrete layer for repairing projectile bullet damage to strengthening reinforced concrete (RC) beams. This study comprised the construction and testing of eight RC beams made of RAC and NAC. They are initially subjected to projectile bullets and after that tested with flexure load to evaluate the effect of using RAC and NAC that was investigated. The findings of test results demonstrate that the repaired specimens with RAC or NAC experienced a higher load capacity than the damaged control specimens. As such, this approach could potentially use to restore RAC or NAC beams were previously damaged by projectile bullets. In addition, the findings of this research indicate that the load capacity of the damaged RC beams that were previously repaired using the NAC layer was higher than the load capacity of the damaged RC beams that were repaired using the RAC layer. The load capacity enhanced significantly of (106%–118%) and (104%–113%), respectively, when NAC and RAC are utilized in repairs. Therefore, using either NAC or RAC concrete is more economical, environmentally friendly, and efficient than demolishing.
期刊介绍:
Structural Concrete, the official journal of the fib, provides conceptual and procedural guidance in the field of concrete construction, and features peer-reviewed papers, keynote research and industry news covering all aspects of the design, construction, performance in service and demolition of concrete structures.
Main topics:
design, construction, performance in service, conservation (assessment, maintenance, strengthening) and demolition of concrete structures
research about the behaviour of concrete structures
development of design methods
fib Model Code
sustainability of concrete structures.