{"title":"矩形螺旋或 $n_1 \\times n_2 \\times \\cdots \\times n_k$ 点问题","authors":"Marco Ripà","doi":"arxiv-2409.02922","DOIUrl":null,"url":null,"abstract":"A generalization of Rip\\`a's square spiral solution for the $n \\times n\n\\times \\cdots \\times n$ Points Upper Bound Problem. Additionally, we provide a\nnon-trivial lower bound for the $k$-dimensional $n_1 \\times n_2 \\times \\cdots\n\\times n_k$ Points Problem. In this way, we can build a range in which, with\ncertainty, all the best possible solutions to the problem we are considering\nwill fall. Finally, we give a few characteristic numerical examples in order to\nappreciate the fineness of the result arising from the particular approach we\nhave chosen.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The rectangular spiral or the $n_1 \\\\times n_2 \\\\times \\\\cdots \\\\times n_k$ Points Problem\",\"authors\":\"Marco Ripà\",\"doi\":\"arxiv-2409.02922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A generalization of Rip\\\\`a's square spiral solution for the $n \\\\times n\\n\\\\times \\\\cdots \\\\times n$ Points Upper Bound Problem. Additionally, we provide a\\nnon-trivial lower bound for the $k$-dimensional $n_1 \\\\times n_2 \\\\times \\\\cdots\\n\\\\times n_k$ Points Problem. In this way, we can build a range in which, with\\ncertainty, all the best possible solutions to the problem we are considering\\nwill fall. Finally, we give a few characteristic numerical examples in order to\\nappreciate the fineness of the result arising from the particular approach we\\nhave chosen.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The rectangular spiral or the $n_1 \times n_2 \times \cdots \times n_k$ Points Problem
A generalization of Rip\`a's square spiral solution for the $n \times n
\times \cdots \times n$ Points Upper Bound Problem. Additionally, we provide a
non-trivial lower bound for the $k$-dimensional $n_1 \times n_2 \times \cdots
\times n_k$ Points Problem. In this way, we can build a range in which, with
certainty, all the best possible solutions to the problem we are considering
will fall. Finally, we give a few characteristic numerical examples in order to
appreciate the fineness of the result arising from the particular approach we
have chosen.