矩形螺旋或 $n_1 \times n_2 \times \cdots \times n_k$ 点问题

Marco Ripà
{"title":"矩形螺旋或 $n_1 \\times n_2 \\times \\cdots \\times n_k$ 点问题","authors":"Marco Ripà","doi":"arxiv-2409.02922","DOIUrl":null,"url":null,"abstract":"A generalization of Rip\\`a's square spiral solution for the $n \\times n\n\\times \\cdots \\times n$ Points Upper Bound Problem. Additionally, we provide a\nnon-trivial lower bound for the $k$-dimensional $n_1 \\times n_2 \\times \\cdots\n\\times n_k$ Points Problem. In this way, we can build a range in which, with\ncertainty, all the best possible solutions to the problem we are considering\nwill fall. Finally, we give a few characteristic numerical examples in order to\nappreciate the fineness of the result arising from the particular approach we\nhave chosen.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The rectangular spiral or the $n_1 \\\\times n_2 \\\\times \\\\cdots \\\\times n_k$ Points Problem\",\"authors\":\"Marco Ripà\",\"doi\":\"arxiv-2409.02922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A generalization of Rip\\\\`a's square spiral solution for the $n \\\\times n\\n\\\\times \\\\cdots \\\\times n$ Points Upper Bound Problem. Additionally, we provide a\\nnon-trivial lower bound for the $k$-dimensional $n_1 \\\\times n_2 \\\\times \\\\cdots\\n\\\\times n_k$ Points Problem. In this way, we can build a range in which, with\\ncertainty, all the best possible solutions to the problem we are considering\\nwill fall. Finally, we give a few characteristic numerical examples in order to\\nappreciate the fineness of the result arising from the particular approach we\\nhave chosen.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对 $n \times n\times \cdots \times n$ 点上界问题的里普(Rip\`a)方螺旋解的广义化。此外,我们还为 $k$ 维的 $n_1 \times n_2 \times \cdots\times n_k$ 点问题提供了一个非难的下限。这样,我们就可以建立一个范围,在这个范围内,我们所考虑的问题的所有可能的最佳解都将是确定无疑的。最后,我们举几个有特点的数值例子,以便理解我们所选择的特殊方法所产生的结果的精细性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The rectangular spiral or the $n_1 \times n_2 \times \cdots \times n_k$ Points Problem
A generalization of Rip\`a's square spiral solution for the $n \times n \times \cdots \times n$ Points Upper Bound Problem. Additionally, we provide a non-trivial lower bound for the $k$-dimensional $n_1 \times n_2 \times \cdots \times n_k$ Points Problem. In this way, we can build a range in which, with certainty, all the best possible solutions to the problem we are considering will fall. Finally, we give a few characteristic numerical examples in order to appreciate the fineness of the result arising from the particular approach we have chosen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信