概率时间语义图:用于检测 twitter 中事件的整体框架

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hadis Bashiri, Hassan Naderi
{"title":"概率时间语义图:用于检测 twitter 中事件的整体框架","authors":"Hadis Bashiri, Hassan Naderi","doi":"10.1007/s10115-024-02208-1","DOIUrl":null,"url":null,"abstract":"<p>Event detection on social media platforms, especially Twitter, poses significant challenges due to the dynamic nature and high volume of data. The rapid flow of tweets and the varied ways users express thoughts complicate the identification of relevant events. Accurately identifying and interpreting events from this noisy and fast-paced environment is crucial for various applications, including crisis management and market analysis. This paper presents a novel unsupervised framework for event detection on social media, designed to enhance the accuracy and efficiency of identifying significant events from Twitter data. The framework incorporates several innovative techniques, including dynamic bandwidth adjustment based on local data density, Mahalanobis distance integration, adaptive kernel density estimation, and an improved Louvain-MOMR method for community detection. Additionally, a new scoring system is implemented to accurately extract trending words that evoke strong emotions, improving the identification of event-related keywords. The proposed framework demonstrates robust performance across three diverse datasets: FACup, Super Tuesday, and US Election, showcasing its effectiveness in capturing temporal and semantic patterns within tweets.</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"93 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic temporal semantic graph: a holistic framework for event detection in twitter\",\"authors\":\"Hadis Bashiri, Hassan Naderi\",\"doi\":\"10.1007/s10115-024-02208-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Event detection on social media platforms, especially Twitter, poses significant challenges due to the dynamic nature and high volume of data. The rapid flow of tweets and the varied ways users express thoughts complicate the identification of relevant events. Accurately identifying and interpreting events from this noisy and fast-paced environment is crucial for various applications, including crisis management and market analysis. This paper presents a novel unsupervised framework for event detection on social media, designed to enhance the accuracy and efficiency of identifying significant events from Twitter data. The framework incorporates several innovative techniques, including dynamic bandwidth adjustment based on local data density, Mahalanobis distance integration, adaptive kernel density estimation, and an improved Louvain-MOMR method for community detection. Additionally, a new scoring system is implemented to accurately extract trending words that evoke strong emotions, improving the identification of event-related keywords. The proposed framework demonstrates robust performance across three diverse datasets: FACup, Super Tuesday, and US Election, showcasing its effectiveness in capturing temporal and semantic patterns within tweets.</p>\",\"PeriodicalId\":54749,\"journal\":{\"name\":\"Knowledge and Information Systems\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10115-024-02208-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02208-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于数据的动态性和海量性,社交媒体平台(尤其是 Twitter)上的事件检测面临着巨大挑战。推文的快速流动和用户表达思想的各种方式使相关事件的识别变得更加复杂。从这种嘈杂、快节奏的环境中准确识别和解读事件,对于危机管理和市场分析等各种应用至关重要。本文介绍了一种用于社交媒体事件检测的新型无监督框架,旨在提高从 Twitter 数据中识别重大事件的准确性和效率。该框架采用了多项创新技术,包括基于本地数据密度的动态带宽调整、Mahalanobis 距离整合、自适应核密度估计以及用于社区检测的改进型 Louvain-MOMR 方法。此外,还采用了一种新的评分系统,以准确提取能唤起强烈情绪的趋势词,从而改进对事件相关关键词的识别。所提出的框架在三个不同的数据集上都表现出了强大的性能:FACup、"超级星期二 "和美国大选,展示了其在捕捉推文中的时间和语义模式方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Probabilistic temporal semantic graph: a holistic framework for event detection in twitter

Probabilistic temporal semantic graph: a holistic framework for event detection in twitter

Event detection on social media platforms, especially Twitter, poses significant challenges due to the dynamic nature and high volume of data. The rapid flow of tweets and the varied ways users express thoughts complicate the identification of relevant events. Accurately identifying and interpreting events from this noisy and fast-paced environment is crucial for various applications, including crisis management and market analysis. This paper presents a novel unsupervised framework for event detection on social media, designed to enhance the accuracy and efficiency of identifying significant events from Twitter data. The framework incorporates several innovative techniques, including dynamic bandwidth adjustment based on local data density, Mahalanobis distance integration, adaptive kernel density estimation, and an improved Louvain-MOMR method for community detection. Additionally, a new scoring system is implemented to accurately extract trending words that evoke strong emotions, improving the identification of event-related keywords. The proposed framework demonstrates robust performance across three diverse datasets: FACup, Super Tuesday, and US Election, showcasing its effectiveness in capturing temporal and semantic patterns within tweets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge and Information Systems
Knowledge and Information Systems 工程技术-计算机:人工智能
CiteScore
5.70
自引率
7.40%
发文量
152
审稿时长
7.2 months
期刊介绍: Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信