结的问题

Ryohei Miyadera, Hikaru Manabe, Aoi Murakami, Shoma Morimoto
{"title":"结的问题","authors":"Ryohei Miyadera, Hikaru Manabe, Aoi Murakami, Shoma Morimoto","doi":"arxiv-2409.02932","DOIUrl":null,"url":null,"abstract":"In this article, the authors give the correct answer to the following\nproblem, which is presented in the well-known problem book \"CHALLENGING\nMATHEMATICAL PROBLEMS WITH ELEMENTARY SOLUTIONS\"? by A. M. Yaglom and L. M.\nYaglom. There are six long blades of grass with the ends protruding above and below,\nand you will tie together the six upper ends in pairs and then tie together the\nsix lower ends in pairs. What is the probability that a ring will be formed\nwhen the blades of grass are tied at random in this fashion? The solution in the above book needs to be corrected, and we will present a\ncorrect answer in this article. Therefore, we are the first persons to present\na correct?answer to a problem in a book published in the USSR? in 1954. By\nfollowing the original idea of this problem book, we present the correct answer\nwithout using knowledge of higher knowledge, although we used a very basic\nknowledge of the Knot theory.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"172 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Problem of Knot\",\"authors\":\"Ryohei Miyadera, Hikaru Manabe, Aoi Murakami, Shoma Morimoto\",\"doi\":\"arxiv-2409.02932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the authors give the correct answer to the following\\nproblem, which is presented in the well-known problem book \\\"CHALLENGING\\nMATHEMATICAL PROBLEMS WITH ELEMENTARY SOLUTIONS\\\"? by A. M. Yaglom and L. M.\\nYaglom. There are six long blades of grass with the ends protruding above and below,\\nand you will tie together the six upper ends in pairs and then tie together the\\nsix lower ends in pairs. What is the probability that a ring will be formed\\nwhen the blades of grass are tied at random in this fashion? The solution in the above book needs to be corrected, and we will present a\\ncorrect answer in this article. Therefore, we are the first persons to present\\na correct?answer to a problem in a book published in the USSR? in 1954. By\\nfollowing the original idea of this problem book, we present the correct answer\\nwithout using knowledge of higher knowledge, although we used a very basic\\nknowledge of the Knot theory.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"172 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,作者给出了下列问题的正确答案,这道问题出现在 A. M. Yaglom 和 L. M. Yaglom 所著的著名问题书籍《带基本解答的数学难题》中。有六片长草叶,草叶的两端分别突出在草叶的上方和下方,你将把六片草叶的上端成对地绑在一起,然后再把六片草叶的下端成对地绑在一起。当草叶以这种方式随机捆扎时,形成一个环的概率是多少?上书中的解法需要更正,我们将在本文中给出正确答案。因此,我们是第一个对 1954 年在苏联出版的一本书中的问题给出正确答案的人。按照这本问题书的原意,尽管我们使用了非常基本的结理论知识,但我们还是在不使用更高知识的情况下给出了正确答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Problem of Knot
In this article, the authors give the correct answer to the following problem, which is presented in the well-known problem book "CHALLENGING MATHEMATICAL PROBLEMS WITH ELEMENTARY SOLUTIONS"? by A. M. Yaglom and L. M. Yaglom. There are six long blades of grass with the ends protruding above and below, and you will tie together the six upper ends in pairs and then tie together the six lower ends in pairs. What is the probability that a ring will be formed when the blades of grass are tied at random in this fashion? The solution in the above book needs to be corrected, and we will present a correct answer in this article. Therefore, we are the first persons to present a correct?answer to a problem in a book published in the USSR? in 1954. By following the original idea of this problem book, we present the correct answer without using knowledge of higher knowledge, although we used a very basic knowledge of the Knot theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信